Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 150(10): 4663-71, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19589862

ABSTRACT

It is now clear that seasonal breeding in ewes is due to an increase in response to estradiol (E(2)) negative feedback in the nonbreeding season (anestrus) that is mediated by the A15 group of dopaminergic (DA) neurons. Because A15 cells do not contain estrogen receptors, we have postulated the presence of estrogen-responsive afferents and recently reported evidence that input from neurons containing gamma-aminobutyric acid (GABA) contribute to the control of A15 activity by E(2). However, GABAergic afferents account for only a fraction of A15 synaptic input and do not appear to vary with season. We therefore investigated the possible role of stimulatory glutamatergic input to A15 neurons. In experiments 1 and 2, local administration into the A15 of either a N-methyl-D-aspartate (NMDA) receptor or a kainate/alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist stimulated episodic LH secretion in a dose-dependent manner in ovary-intact anestrous ewes. In experiment 3, we examined the number of glutamatergic close contacts onto A15 neurons using dual immunocytochemistry in tissue from E(2)-treated ovariectomized anestrous and breeding season ewes. All A15 DA neurons were contacted by glutamatergic vesicles, and the number of close contacts was significantly higher in anestrus than the breeding season. Finally, using a triple-label immunocytochemistry procedure, we did not observe any colocalization of markers for GABA and glutamate in vesicles contacting A15 neurons. These results support the hypothesis that glutamatergic afferents actively stimulate A15 DA neurons in ovary-intact anestrous ewes and raise the possibility that alterations in this input may contribute to increased A15 neural activity during anestrus.


Subject(s)
Estradiol/metabolism , Luteinizing Hormone/metabolism , Neurons, Afferent/metabolism , Receptors, Glutamate/metabolism , Seasons , Animals , Excitatory Amino Acid Antagonists/administration & dosage , Feedback, Physiological , Female , Quinoxalines/administration & dosage , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Sheep , Tyrosine 3-Monooxygenase/metabolism , Valine/administration & dosage , Valine/analogs & derivatives , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
2.
Endocrinology ; 149(6): 2762-72, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18325998

ABSTRACT

Seasonal anestrus in ewes is driven by an increase in response to estradiol (E2) negative feedback. Compelling evidence indicates that inhibitory A15 dopaminergic (DA) neurons mediate the increased inhibitory actions of E2 in anestrus, but these neurons do not contain estrogen receptors. Therefore, we have proposed that estrogen-responsive afferents to A15 neurons are part of the neural circuit mediating E2 negative feedback in anestrus. This study examined the possible role of afferents containing gamma-aminobutyric acid (GABA) and nitric oxide (NO) in modulating the activity of A15 neurons. Local administration of NO synthase inhibitors to the A15 had no effect on LH, but GABA receptor ligands produced dramatic changes. Administration of either a GABA A or GABA B receptor agonist to the A15 increased LH secretion in ovary-intact ewes, suggesting that GABA inhibits A15 neural activity. In ovariectomized anestrous ewes, the same doses of GABA receptor agonist had no effect, but combined administration of a GABA A and GABA B receptor antagonist to the A15 inhibited LH secretion. These data are consistent with the hypothesis that endogenous GABA release within the A15 is low in ovary-intact anestrous ewes and elevated after ovariectomy. Using dual immunocytochemistry, we observed that GABAergic varicosities make close contacts on to A15 neurons and that A15 neurons contain both the GABA A-alpha1 and the GABA B-R1 receptor subunits. Based on these data, we propose that in anestrous ewes, E2 inhibits release of GABA from afferents to A15 DA neurons, increasing the activity of these DA neurons and thus suppressing episodic secretion of GnRH and LH.


Subject(s)
Anestrus/physiology , Estradiol/physiology , Neurons/physiology , gamma-Aminobutyric Acid/physiology , Anestrus/drug effects , Animals , Baclofen/analogs & derivatives , Baclofen/pharmacology , Bicuculline/analogs & derivatives , Bicuculline/pharmacology , Dopamine/physiology , Feedback , Female , Muscimol/pharmacology , Neurons/drug effects , Ovariectomy , Sheep
3.
Neuroendocrinology ; 87(2): 113-20, 2008.
Article in English | MEDLINE | ID: mdl-17934249

ABSTRACT

Recent studies implicate the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), in septopreoptic (SPO) mechanisms that suppress preovulatory pituitary luteinizing hormone (LH) secretion during neuroglucopenia. Since Fos immunolabeling of the SPO of rats treated by caudal fourth ventricular (CV4) administration of the glucose antimetabolite, 5-thioglucose (5TG), parallels the distribution of GABA neuronal perikarya, the current studies investigated the genomic responsiveness of neuroanatomically-defined populations of glutamate decarboxylase (GAD)-immunoreactive (-ir) neurons in this region of the brain to hindbrain glucoprivation. In lieu of reports that CV4 5TG enhances SPO GABA turnover via mu opioid receptor (mu-R)-dependent mechanisms and evidence that GAD- and mu-R-ir are codistributed within the SPO, patterns of cellular colocalization of these antigens were also evaluated here. Neural tissue was obtained from groups of steroid-primed ovariectomized female rats 2 h after CV4 injection of vehicle or 5TG. Neuronal cell bodies in the lateral and medial septum, medial (MPN) and median preoptic nuclei (MEPO), and rostral medial preoptic area (rMPO) were immunostained for cytoplasmic GAD-ir, but only GAD-reactive neurons in the rMPO and MEPO exhibited robust nuclear colabeling for Fos in response to 5TG. SPO GABA neurons in the vehicle-treated controls were uniformly Fos-ir-negative. Dual immunolabeling for GAD- and mu-R revealed approximately 52% and 36% colabeling of this phenotype in the MEPO and MPN, and colocalization of lesser magnitude (18%) in the rMPO. These results demonstrate site-specific genomic activation of GABAergic neurons in the female rat SPO by CV4 glucose antimetabolite administration, and implicate MEPO and rMPO GABA cell populations in neural pathways that mediate regulatory effects of hindbrain glucoprivic signaling on CNS functions, including inhibition of the steroid positive feedback-activated gonadotropin-releasing hormone/LH neuroendocrine axis. The current studies also support the view that a proportion of neuroglucoprivic-sensitive GABA neurons in the MEPO and rMPO may be direct substrates for mu-R ligand modulatory actions during this state of central substrate imbalance.


Subject(s)
Glucose/metabolism , Glutamate Decarboxylase/metabolism , Neurons/enzymology , Preoptic Area/metabolism , Rhombencephalon/metabolism , Animals , Female , Luteinizing Hormone/metabolism , Neurons/pathology , Ovariectomy , Preoptic Area/pathology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism , Rhombencephalon/pathology , gamma-Aminobutyric Acid/metabolism
4.
Endocrinology ; 148(10): 4993-5001, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17615146

ABSTRACT

Orphanin FQ (OFQ), also known as nociceptin, is a member of the endogenous opioid peptide family that has been functionally implicated in the control of pain, anxiety, circadian rhythms, and neuroendocrine function. In the reproductive system, endogenous opioid peptides are involved in the steroid feedback control of GnRH pulses and the induction of the GnRH surge. The distribution of OFQ in the preoptic area and hypothalamus overlaps with GnRH, and in vitro evidence suggests that OFQ can inhibit GnRH secretion from hypothalamic fragments. Using the sheep as a model, we examined the potential anatomical colocalization between OFQ and GnRH using dual-label immunocytochemistry. Confocal microscopy revealed that approximately 93% of GnRH neurons, evenly distributed across brain regions, were also immunoreactive for OFQ. In addition, almost all GnRH fibers and terminals in the external zone of the median eminence, the site of neurosecretory release of GnRH, also colocalized OFQ. This high degree of colocalization suggested that OFQ might be functionally important in controlling reproductive endocrine events. We tested this possibility by examining the effects of intracerebroventricular administration of [Arg(14), Lys(15)] OFQ, an agonist to the OFQ receptor, on pulsatile LH secretion. The agonist inhibited LH pulse frequency in both luteal phase and ovariectomized ewes and suppressed pulse amplitude in the latter. The results provide in vivo evidence supporting a role for OFQ in the control of GnRH secretion and raise the possibility that it acts as part of an ultrashort, autocrine feedback loop controlling GnRH pulses.


Subject(s)
Neurosecretory Systems/physiology , Opioid Peptides/physiology , Reproduction/physiology , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Immunohistochemistry , Luteal Phase/drug effects , Luteinizing Hormone/metabolism , Opioid Peptides/agonists , Opioid Peptides/metabolism , Opioid Peptides/pharmacology , Ovariectomy , Preoptic Area/metabolism , Sheep , Tissue Distribution , Nociceptin
5.
Neuroendocrinology ; 80(4): 201-9, 2004.
Article in English | MEDLINE | ID: mdl-15591795

ABSTRACT

The neurochemical mechanisms underlying hindbrain glucoprivic suppression of the luteinizing hormone (LH) surge are not known. A body of experimental evidence supports the view that gonadal steroid positive-feedback action on the reproductive neuroendocrine axis relieves tonic GABAergic inhibition of gonadotropin-releasing hormone neurons by diminishing preoptic release of this neurotransmitter. The present studies evaluated the hypothesis that hindbrain glucoprivic attenuation of the LH surge may be correlated with site-specific modifications in gonadal steroid suppression of gamma-aminobutyric acid release in this region of the brain. Individual septopreoptic loci were microdissected from the brains of estrogen, progesterone-primed ovariectomized female rats injected with the glucose antimetabolite, 5-thioglucose (5-TG), or vehicle into the caudal fourth ventricle during the ascending phase of the surge, and analyzed by high-performance liquid chromatography. The data show that 5- TG administration increased GABA release within the rostral preoptic area (rPO), anteroventral periventricular nucleus (AVPV), and median preoptic nucleus (MEPO), relative to the vehicle-treated controls, but did not alter neurotransmitter release in other structures evaluated. The rate of GABA turnover in each brain site was equivalent between animals injected with the mu opioid receptor antagonist CTOP and 5-TG versus their vehicle-treated controls. These results constitute novel evidence for site-specific modulation of steroid positive-feedback suppression of this inhibitory neurotransmitter by caudal hindbrain signaling of glucose insufficiency, and support the need for neurochemical characterization of glucoprivic-sensitive afferent input to GABAergic neurons terminating within the rPO, AVPV, and MEPO, as well as the relevance of enhanced local GABA release for reproductive neuroendocrine function.


Subject(s)
Glucose/analogs & derivatives , Glucose/deficiency , Glucose/pharmacology , Preoptic Area/metabolism , Receptors, Opioid, mu/physiology , Steroids/pharmacology , gamma-Aminobutyric Acid/metabolism , Animals , Brain Chemistry/drug effects , Chromatography, High Pressure Liquid/methods , Drug Interactions , Female , Luteinizing Hormone/metabolism , Microdissection/methods , Ovariectomy/methods , Preoptic Area/anatomy & histology , Radioimmunoassay/methods , Rats , Rats, Sprague-Dawley , Rhombencephalon/drug effects
6.
Endocrinology ; 145(11): 5322-31, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15308614

ABSTRACT

Central glucostasis is a critical monitored variable in neuroendocrine regulation of pituitary LH secretion. Glucoprivic signals originating within the caudal hindbrain suppress LH. Septopreoptic mu opioid receptors (mu-R) function within neural pathways maintaining basal LH levels and mediate the effects of diverse physiological stimuli on hormone release. To identify potential sites in the septopreoptic area where ligand neuromodulatory actions may occur in response to hindbrain glucoprivic signaling, the present studies evaluated the distribution of mu-R-immunoreactive (-ir) neurons in the septopreoptic area that are genomically activated in response to caudal fourth ventricular (CV4) delivery of the glucose antimetabolite, 5-thioglucose (5TG). The effects of lateral ventricular pretreatment with the selective mu-R antagonist, d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP), on LH secretory and GnRH neuronal transcriptional responses to hindbrain glucoprivation were also evaluated. Estradiol benzoate- and progesterone-primed, ovariectomized female rats were treated by CV4 administration of 5TG or the vehicle, saline, at the onset of the afternoon LH surge. The inhibitory effects of hindbrain glucoprivation on mean plasma LH levels as well as colabeling of rostral preoptic GnRH neurons for Fos-ir were attenuated in animals pretreated by lateral ventricular delivery of CTOP. Dual immunocytochemical labeling for septopreoptic mu-R-ir and Fos-ir demonstrated a robust induction of Fos expression by receptor-positive neurons within discrete septopreoptic sites in response to CV4 5TG, a genomic response that was diminished by CTOP pretreatment. The current studies provide novel evidence for the transcriptional activation of neuroanatomically characterized, mu-R-expressing neurons by decreased hindbrain glucose utilization and show that the functional status of mu-R is critical for maximal induction of the Fos stimulus-transcription cascade in these cells by central glucoprivic signaling. The finding that receptor antagonist-mediated suppression of this genomic response is correlated with increased reproductive neuroendocrine output supports a role for these discrete mu-R-expressing neuron populations as substrates for ligand regulatory effects on the GnRH-pituitary LH axis during neuroglucopenia.


Subject(s)
Blood Glucose/metabolism , Glucose/analogs & derivatives , Neurosecretory Systems/physiology , Receptors, Opioid, mu/metabolism , Reproduction/physiology , Rhombencephalon/physiology , Somatostatin/analogs & derivatives , Animals , Female , Fourth Ventricle/metabolism , Glucose/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Hypoglycemia/metabolism , Hypoglycemia/physiopathology , Luteinizing Hormone/blood , Neural Pathways , Neurons/metabolism , Neurosecretory Systems/cytology , Preoptic Area/cytology , Preoptic Area/physiology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Rhombencephalon/cytology , Somatostatin/pharmacology , Transcriptional Activation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...