Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 264: 110256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762062

ABSTRACT

In metastatic renal cell carcinoma (mRCC), existing treatments including checkpoint inhibitors are failed to cure and/or prevent recurrence of the disease. Therefore, in-depth understanding of tumor tissue resident memory T cells (TRMs) dysfunction are necessitated to enrich efficacy of immunotherapies and increasing disease free survival in treated patients. In patients, we observed dysregulation of K+, Ca2+, Na2+ and Zn2+ ion channels leads to excess infiltration of their respective ions in tumor TRMs, thus ionic gradients are disturbed and cells became hyperpolarized. Moreover, overloaded intramitochondrial calcium caused mitochondrial depolarization and trigger apoptosis of tumor TRMs. Decreased prevalence of activated tumor TRMs reflected our observations. Furthermore, disruptions in ionic concentrations impaired the functional activities and/or suppressed anti-tumor action of circulating and tumor TRMs in RCC. Collectively, these findings revealed novel mechanism behind dysfunctionality of tumor TRMs. Implicating enrichment of activated TRMs within tumor would be beneficial for better management of RCC patients.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Renal Cell , Kidney Neoplasms , Memory T Cells , Humans , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Memory T Cells/immunology , Immunologic Memory , Male , Female , Middle Aged , Ion Channels , Aged
2.
J Cancer Res Clin Oncol ; 149(9): 5617-5626, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36515749

ABSTRACT

INTRODUCTION: In RCC, systematic procedures such as surgery, chemo-radiation therapy, and application of target-based inhibitors increase the risk of several comorbidities such as chronic kidney disease, hemorrhage, and cardiac arrest that may increase the mortality rate. Even though immune-based checkpoint inhibitor therapies have an overall good response rate, it is restricted to only 30-40% of patients. Hence, an in-depth study of tumor pathophysiology in RCC is needed to identify the new therapeutic target. In RCC, persisted hypoxia is an essential phenomenon for tumor growth and progression. KCMF1 is a newly identified ubiquitin ligase whose domain interacts with destabilized proteins and reprogrammed the ubiquitin coding for lysosome-mediated degradation and autophagy under hypoxic conditions/oxidative stress and maintaining cellular homeostasis. But in RCC, the functional role of KCMF1 remains undefined to date. METHOD: We determined KCMF1 and its associated proteins RAD6 and UBR4 expression and their co-localization using confocal microscopy in tumor and non-tumor tissues samples. Further, immunofluorescence staining was performed to determine autophagy (LC3B, p62), hypoxia-inducible factor (HIF-1A) and ion channel markers (Kv1.3, KCNN4) in RCC patients (n-10). Inductively coupled plasma mass spectrophotometry (ICPMS) was performed to estimate the concentration of potassium (K+), sodium (Na+) and Zinc (zn2+) in tumor and non-tumor cells of RCC patients (n-20). Lastly, images were analyzed using ZEN3.1, and ImageJ software. RESULT AND CONCLUSION: We observed a discrepancy in the formation of ubiquitin ligase, autophagosome via KCMF1, and ionic concentration in tumor cells, which might be one of the possible factors for cancer evolution. KCMF1-associated ubiquitin ligase system could be considered as a novel therapeutic target for RCC in the future.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Proteins , Ligases , Kidney Neoplasms/pathology , Autophagy , Hypoxia , Ubiquitins , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...