Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 262: 127810, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32763578

ABSTRACT

Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.


Subject(s)
Copper/metabolism , Crops, Agricultural/physiology , Soil Pollutants/metabolism , Biological Availability , Copper/analysis , Copper/toxicity , Crops, Agricultural/metabolism , Heavy Metal Poisoning , Humans , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
2.
Chemosphere ; 236: 124364, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31326755

ABSTRACT

Water is polluted by increasing activities of population and the necessity to provide them with goods and services that use water as a vital resource. The contamination of water due to heavy metals (HMs) is a big concern for humankind; however, global studies related to this topic are scarce. Thus, the current review assesses the content of HMs in surface water bodies throughout the world from 1994 to 2019. To achieve this goal, multivariate analyses were applied in order to determine the possible sources of HMs. Among the analyzed HMs in a total of 147 publications, the average content of Cr, Mn, Co, Ni, As and Cd exceeded the permissible limits suggested by WHO and USEPA. The results of the heavy metal pollution index, evaluation index, the degree of contamination, water pollution and toxicity load showed that the examined water bodies are highly polluted by HMs. The results of median lethal toxicity index showed maximum toxicity in As, Co, Cr and Ni in the surface water bodies. Results of ingestion and dermal pathways for adults and children in the current analyzed review showed that As is the major contaminant. Moreover, Cr, Ni, As and Cd showed values that could be considered as a high risk for cancer generation via the ingestion pathway as compared to the dermal route. It is recommended that remediation techniques such as the introduction of aquatic phytoremediation plant species and adsorbents should be included in land management plans in order to reduce human risks.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Humans , Multivariate Analysis
3.
Chemosphere ; 216: 449-462, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30384315

ABSTRACT

Soil is substantive component of biosphere, which is exposed to plethora of pollutants including heavy metals. These are added by natural as well as anthropogenic activities. Upsurge in heavy metal content affects all organisms by biomagnification. So, it becomes vital to create a database of heavy metals concentration in soil. This is relevant in countries where unsustainable intensive agriculture, industrial and urban development is in progress. The present review of the scientific literature from 1991 to 2018 on heavy metals in soils in India shows that Zn and Pb exceeded their limits for Indian natural soil guidelines (Zn 22.1 and Pb 13.1 µg/g), Canada (Zn 200 µg/g), Swedish (80 µg/g) and Poland (Zn 300 µg/g) soil guidelines. The mean values of As and Cu for all soil types except for roadside soils, exceeded the limits. The average value of Cd for all soil types exceeded their limit. The mean values obtained for soils of India are Fe (23774.84 µg/g), Mn (872.54 µg/g), Zn (359.94 µg/g), Cu (183.67 µg/g), Cr (161.42 µg/g), As (148.70 µg/g), Ni (112.41 µg/g), Pb (61.87 µg/g), Co (37.63 µg/g) and Cd (14.16 µg/g). Cluster analysis and factor analysis were employed to different soil types and showed multiple sources of these metals. The contamination factor (CF), enrichment factor (EF) and potential contamination index (Cp) showed that Cd and As are the main contaminants. The results of ecological risk index indicated that Cd is the main pollutant in the different soils of India.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Metals, Heavy/chemistry , Soil Pollutants/chemistry , Ecology , India , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...