Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(5): e0250486, 2021.
Article in English | MEDLINE | ID: mdl-33975330

ABSTRACT

Research into the epigenome is of growing importance as a loss of epigenetic control has been implicated in the development of neurodegenerative diseases. Previous studies have implicated aberrant DNA and histone methylation in multiple sclerosis (MS) disease pathogenesis. We have previously reported that the methyl donor betaine is depleted in MS and is linked to changes in histone H3 trimethylation (H3K4me3) in neurons. We have also shown that betaine increases histone methyltransferase activity by activating chromatin bound betaine homocysteine S-methyltransferase (BHMT). Here, we investigated the role of the BHMT-betaine methylation pathway in oligodendrocytes. Immunocytochemistry in the human MO3.13 cell line, primary rat oligodendrocytes, and tissue from MS postmortem brain confirmed the presence of the BHMT enzyme in the nucleus in oligodendrocytes. BHMT expression is increased 2-fold following oxidative insult, and qRT-PCR demonstrated that betaine can promote an increase in expression of oligodendrocyte maturation genes SOX10 and NKX-2.2 under oxidative conditions. Chromatin fractionation provided evidence of a direct interaction of BHMT on chromatin and co-IP analysis indicates an interaction between BHMT and DNMT3a. Our data show that both histone and DNA methyltransferase activity are increased following betaine administration. Betaine effects were shown to be dependent on BHMT expression following siRNA knockdown of BHMT. This is the first report of BHMT expression in oligodendrocytes and suggests that betaine acts through BHMT to modulate histone and DNA methyltransferase activity on chromatin. These data suggest that methyl donor availability can impact epigenetic changes and maturation in oligodendrocytes.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/metabolism , Betaine/metabolism , Multiple Sclerosis/pathology , Oligodendroglia/drug effects , Animals , Betaine/pharmacology , Betaine-Homocysteine S-Methyltransferase/antagonists & inhibitors , Betaine-Homocysteine S-Methyltransferase/genetics , Brain/metabolism , Brain/pathology , Cells, Cultured , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , Gene Expression/drug effects , Histones/metabolism , Humans , Methionine/metabolism , Methylation , Multiple Sclerosis/genetics , Nitroprusside/pharmacology , Oligodendroglia/cytology , Oligodendroglia/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , SOXE Transcription Factors/metabolism
2.
Epigenetics ; 15(8): 871-886, 2020 08.
Article in English | MEDLINE | ID: mdl-32096676

ABSTRACT

Methionine metabolism is dysregulated in multiple sclerosis (MS). The methyl donor betaine is depleted in the MS brain where it is linked to changes in levels of histone H3 trimethylated on lysine 4 (H3K4me3) and mitochondrial impairment. We investigated the effects of replacing this depleted betaine in the cuprizone mouse model of MS. Supplementation with betaine restored epigenetic control and alleviated neurological disability in cuprizone mice. Betaine increased the methylation potential (SAM/SAH ratio), levels of H3K4me3, enhanced neuronal respiration, and prevented axonal damage. We show that the methyl donor betaine and the betaine homocysteine methyltransferase (BHMT) enzyme can act in the nucleus to repair epigenetic control and activate neuroprotective transcriptional programmes. ChIP-seq data suggest that BHMT acts on chromatin to increase the SAM/SAH ratio and histone methyltransferase activity locally to increase H3K4me3 and activate gene expression that supports neuronal energetics. These data suggest that the methyl donor betaine may provide neuroprotection in MS where mitochondrial impairment damages axons and causes disability.


Subject(s)
Betaine/pharmacology , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Mitochondria/metabolism , Multiple Sclerosis/genetics , Animals , Betaine-Homocysteine S-Methyltransferase/metabolism , Cell Respiration , Cells, Cultured , Cuprizone/toxicity , Histone Code , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley
3.
PLoS One ; 13(8): e0203057, 2018.
Article in English | MEDLINE | ID: mdl-30148869

ABSTRACT

Multiple sclerosis (MS) is a devastating neurological disease, which is characterized by multifocal demyelinating lesions in the central nervous system. The most abundant myelin lipids are galactosylceramides and their sulfated form, sulfatides, which together account for about 27% of the total dry weight of myelin. In this study we investigated the role of vitamin K in remyelination, by using an animal model for MS, the cuprizone model. Demyelination was induced in C57Bl6/J mice, by feeding them a special diet containing 0.3% cuprizone (w/w) for 6 weeks. After 6 weeks, cuprizone was removed from the diet and mice were allowed to remyelinate for either 1 or 3 weeks, in the absence or presence of vitamin K (i.p. phylloquinone, 2mg, three times per week). Vitamin K enhanced the production of total brain sulfatides, after both 1 week and 3 weeks of remyelination (n = 5, P-values were <0.0001), when compared with the control group. To determine whether or not there is a synergistic effect between vitamins K and D for the production of brain sulfatides, we employed a similar experiment as above. Vitamin K also increased the production of individual brain sulfatides, including d18:1/18:0, d18:1/20:0, d18:1/24:0, and d18:1/24:1 after 3 weeks of remyelination, when compared to the control group. In addition, vitamin D enhanced the production of total brain sulfatides, as well as d18:1/18:0, d18:1/24:0, and d18:1/24:1 sulfatides after 3 weeks of remyelination, but no synergistic effect between vitamins K and D for the production of total brain sulfatides was observed.


Subject(s)
Brain/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Neuroprotective Agents/pharmacology , Sulfoglycosphingolipids/metabolism , Vitamin K/pharmacology , Animals , Brain/metabolism , Brain/pathology , Cuprizone , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Galactosylceramides/pharmacology , Male , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Remyelination/drug effects , Remyelination/physiology , Swine , Vitamin D/pharmacology , Vitamin K/metabolism
4.
Mol Ther ; 26(3): 793-800, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29456021

ABSTRACT

Canavan disease, a leukodystrophy caused by loss-of-function ASPA mutations, is characterized by brain dysmyelination, vacuolation, and astrogliosis ("spongiform leukodystrophy"). ASPA encodes aspartoacylase, an oligodendroglial enzyme that cleaves the abundant brain amino acid N-acetyl-L-aspartate (NAA) to L-aspartate and acetate. Aspartoacylase deficiency results in a 50% or greater elevation in brain NAA concentration ([NAAB]). Prior studies showed that homozygous constitutive knockout of Nat8l, the gene encoding the neuronal NAA synthesizing enzyme N-acetyltransferase 8-like, prevents aspartoacylase-deficient mice from developing spongiform leukodystrophy. We now report that brain Nat8l knockdown elicited by intracerebroventricular/intracisternal administration of an adeno-associated viral vector carrying a short hairpin Nat8l inhibitory RNA to neonatal aspartoacylase-deficient AspaNur7/Nur7 mice lowers [NAAB] and suppresses development of spongiform leukodystrophy.


Subject(s)
Acetyltransferases/genetics , Amidohydrolases/deficiency , Canavan Disease/genetics , Canavan Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Canavan Disease/pathology , Canavan Disease/physiopathology , Dependovirus/genetics , Disease Models, Animal , Gene Expression , Gene Knockdown Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Mice , Mice, Knockout , Motor Activity , Neurons/metabolism , RNA, Messenger/genetics , Transduction, Genetic
5.
J Neurosci ; 37(2): 413-421, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28077719

ABSTRACT

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. SIGNIFICANCE STATEMENT: This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits.


Subject(s)
Aspartic Acid/analogs & derivatives , Canavan Disease/metabolism , Disease Models, Animal , Neurons/metabolism , Animals , Aspartic Acid/biosynthesis , Aspartic Acid/deficiency , Aspartic Acid/genetics , Canavan Disease/genetics , Canavan Disease/pathology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...