Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 257(Pt 2): 128720, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101684

ABSTRACT

Comprehensive insight into the gender-based gene expression-related omics data in a rodent model of diabetic nephropathy (DN) is scarce. In the present study, the gender-based genes regulating different pathways involved in the progression of DN were explored through an unbiased RNA sequence of kidneys from BTBR mice with DN. We identified 17,739 and 17,981 genes in male and female DN mice; 1121 and 655 genes were expressed differentially (DEGs, differentially expressed genes) in male and female DN mice; both genders displayed only 195 DEGs. In the male DN mice, the number of upregulated genes was nearly the same as that of the down-regulated genes. In contrast, the number of upregulated genes was lesser than that of the down-regulated genes in the female DN mice, manifesting a remarkable gender disparity during the progression of DN in this animal model. Gene Ontology (GO) and KEGG-enriched results showed that most of these DEGs were related to the critical biological processes, including metabolic pathways, natural oxidation, bile secretion, and PPAR signaling; all are highly associated with DN. Notably, the DEGs significantly enriched for steroid hormone biosynthesis pathway were identified in both genders; the number of DEGs increased was 22 in male DN mice and 14 in female DN mice. Specifically, the Ugt1a10, Akr1c12, and Akr1c14 were upregulated in both genders. Interestingly, the Hsd11b1 gene was upregulated in female DN mice but downregulated in male DN mice. These results suggest that a significant gender-based variance in the gene expression occurs during the progression of DN and may be playing a role in the advancement of DN in the BTBR mouse model.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Female , Male , Mice , Animals , Transcriptome , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Gene Expression Profiling , Kidney/metabolism , Disease Models, Animal , Diabetes Mellitus/metabolism
2.
Int J Nephrol Renovasc Dis ; 16: 241-252, 2023.
Article in English | MEDLINE | ID: mdl-38075191

ABSTRACT

Diabetic nephropathy (DN) is a common complication affecting many diabetic patients, leading to end-stage renal disease. However, its pathogenesis still needs to be fully understood to enhance the effectiveness of treatment methods. Traditional theories are predominantly centered on glomerular injuries and need more explicit explanations of recent clinical observations suggesting that renal tubules equally contribute to renal function and that tubular lesions are early features of DN, even occurring before glomerular lesions. Although the conventional view is that DN is not an inflammatory disease, recent studies indicate that systemic and local inflammation, including tubulointerstitial inflammation, contributes to the development of DN. In patients with DN, intrinsic tubulointerstitial cells produce many proinflammatory factors, leading to medullary inflammatory cell infiltration and activation of inflammatory cells in the interstitial region. Therefore, understanding the molecular mechanism of renal tubulointerstitial inflammation contributing to DN injury is of great significance and will help further identify key factors regulating renal tubulointerstitial inflammation in the high glucose environment. This will aid in developing new targets for DN diagnosis and treatment and expanding new DN treatment methods.

3.
Biomolecules ; 13(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-38136614

ABSTRACT

MicroRNAs (miRNAs) are noncoding small RNAs that regulate the protein expression of coding messenger RNAs. They are used as biomarkers to aid in diagnosing, prognosticating, and surveillance of diseases, especially solid cancers. MiR-193a was shown to be directly pathogenic in an experimental mouse model of focal segmental glomerulosclerosis (FSGS) during the last decade. Its specific binding and downregulation of Wilm's tumor-1 (WT-1), a transcription factor regulating podocyte phenotype, is documented. Also, miR-193a is a regulator switch causing the transdifferentiation of glomerular parietal epithelial cells to a podocyte phenotype in in vitro study. Interaction between miR-193a and apolipoprotein 1 (APOL1) mRNA in glomeruli (filtration units of kidneys) is potentially involved in the pathogenesis of common glomerular diseases. Since the last decade, there has been an increasing interest in the role of miR-193a in glomerular diseases, including diabetic nephropathy and membranous nephropathy, besides FSGS. Considering the lack of biomarkers to manage FSGS and diabetic nephropathy clinically, it is worthwhile to invest in evaluating miR-193a in the pathogenesis of these diseases. What causes the upregulation of miR-193a in FSGS and how the mechanism is different in different glomerular disorders still need to be elucidated. This narrative review highlights the pathogenic mechanisms of miR-193a elevation in various glomerular diseases and its potential use in clinical management.


Subject(s)
Diabetic Nephropathies , Glomerulosclerosis, Focal Segmental , MicroRNAs , Mice , Animals , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/pathology , Diabetic Nephropathies/pathology , Kidney/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers
4.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745500

ABSTRACT

Antiretroviral therapy (ART) has profoundly decreased HIV-1 associated morbidity. However, despite ART, immune cells remain latently infected and slowly release viral proteins, leading to chronic inflammation and HIV associated comorbidities. Thus, new strategies are needed to reduce the inflammatory effects of HIV-1. In previous studies we found that gamma secretase inhibitor (GSIXX) ameliorated renal lesions of HIV-Tg26 mice carrying replication defective HIV-1 PNL4-3 by inhibiting Notch activation. Since gamma secretase inhibition is not a safe strategy in humans, here we examined the specific role of the Notch3 pathway in the pathogenesis of the renal lesions and outcome of HIV-Tg26 mice. We found that Notch3 is activated in podocytes and other renal cells in HIV-Tg26 mice and human biopsies with HIV-1 associated Nephropathy (HIVAN). Knockdown of Notch3 in HIV-Tg26 mice revealed a marked reduction in the mortality rate, improvement in renal injury and function. RNA sequencing and immunolabeling data revealed that Notch3 deletion drastically reduced infiltrating renal macrophages in HIV-Tg-N3KO mice in association with renal reduction of HIV-nef mRNA expression levels. In fact, bone marrow derived macrophages from HIV-Tg26 mice showed a significant activation of Notch3 signaling. Further, systemic levels of TNF-alpha and MCP-1 and other inflammatory chemokines and cytokines were reduced in Tg-N3KO mice as compared to HIV-Tg26 mice and this translated to a marked reduction of HIV-induced skin lesions. Taken together, these studies strongly point to a dual inhibitory/therapeutic effect of Notch3 inhibition on HIV-induced systemic, skin and renal lesions independently of ART.

5.
Mol Med ; 29(1): 92, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415117

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinical reports indicate that smoking is a significant risk factor for chronic kidney disease, and the tobacco epidemic exacerbates kidney damage in patients with DN. However, the underlying molecular mechanisms remain unclear. METHOD: In the present study, we used a diabetic mouse model to investigate the molecular mechanisms for nicotine-exacerbated DN. Twelve-week-old female mice were injected with streptozotocin (STZ) to establish a hyperglycemic diabetic model. After four months, the control and hyperglycemic diabetic mice were further divided into four groups (control, nicotine, diabetic mellitus, nicotine + diabetic mellitus) by intraperitoneal injection of nicotine or PBS. After two months, urine and blood were collected for kidney injury assay, and renal tissues were harvested for further molecular assays using RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry. In vitro studies, we used siRNA to suppress Grem1 expression in human podocytes. Then we treated them with nicotine and high glucose to compare podocyte injury. RESULT: Nicotine administration alone did not cause apparent kidney injury, but it significantly increased hyperglycemia-induced albuminuria, BUN, plasma creatinine, and the kidney tissue mRNA expression of KIM-1 and NGAL. Results from RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry analysis revealed that, compared to hyperglycemia or nicotine alone, the combination of nicotine treatment and hyperglycemia significantly increased the expression of Grem1 and worsened DN. In vitro experiments, suppression of Grem1 expression attenuated nicotine-exacerbated podocyte injury. CONCLUSION: Grem1 plays a vital role in nicotine-exacerbated DN. Grem1 may be a potential therapeutic target for chronic smokers with DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hyperglycemia , Humans , Mice , Female , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/chemically induced , Up-Regulation , Nicotine/adverse effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/chemically induced , Hyperglycemia/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
6.
Biomolecules ; 13(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36830635

ABSTRACT

Glomerular parietal epithelial cells (PECs) have been increasingly recognized to have crucial functions. Lineage tracking in animal models showed the expression of a podocyte phenotype by PECs during normal glomerular growth and after acute podocyte injury, suggesting a reparative role of PECs. Conversely, activated PECs are speculated to be pathogenic and comprise extracapillary proliferation in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CrescGN). The reparative and pathogenic roles of PECs seem to represent two sides of PEC behavior directed by the local milieu and mediators. Recent studies suggest microRNA-193a (miR193a) is involved in the pathogenesis of FSGS and CrescGN. In a mouse model of primary FSGS, the induction of miR193a caused the downregulation of Wilms' tumor protein, leading to the dedifferentiation of podocytes. On the other hand, the inhibition of miR193a resulted in reduced crescent lesions in a mouse model of CrescGN. Interestingly, in vitro studies report that the downregulation of miR193a induces trans-differentiation of PECs into a podocyte phenotype. This narrative review highlights the critical role of PEC behavior in health and during disease and its modulation by miR193a.


Subject(s)
Glomerulosclerosis, Focal Segmental , MicroRNAs , Podocytes , Mice , Animals , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Epithelial Cells/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Podocytes/metabolism , MicroRNAs/genetics
7.
FEBS J ; 288(19): 5586-5597, 2021 10.
Article in English | MEDLINE | ID: mdl-33340240

ABSTRACT

HIV-associated nephropathy (HIVAN) remains a concern among untreated HIV patients, notably of African descent, as patients can reach end-stage renal disease within 3 years. Two variants (G1 and G2) of the APOL1 gene, common in African populations to protect against African sleeping sickness, have been associated with an increased risk of several glomerular disorders including HIVAN, hypertension-attributed chronic kidney disease, and idiopathic focal segmental glomerulosclerosis and are accordingly named renal risk variants (RRVs). This review examines the mechanisms by which APOL1 RRVs drive glomerular injury in the setting of HIV infection and their potential application to patient management. Innate antiviral mechanisms activated by chronic HIV infection, especially those involving type 1 interferons, are of particular interest as they have been shown to upregulate APOL1 expression. Additionally, the downregulation of miRNA 193a (a repressor of APOL1) is also associated with the upregulation of APOL1. Interestingly, glomerular damage affected by APOL1 RRVs is caused by both loss- and gain-of-function changes in the protein, explicitly characterizing these effects. Their intracellular localization offers a further understanding of the nuances of APOL1 variant effects in promoting renal disease. Finally, although APOL1 variants have been recognized as a critical genetic player in mediating kidney disease, there are significant gaps in their application to patient management for screening, diagnosis, and treatment.


Subject(s)
AIDS-Associated Nephropathy/genetics , Apolipoprotein L1/genetics , HIV Infections/genetics , MicroRNAs/genetics , AIDS-Associated Nephropathy/complications , AIDS-Associated Nephropathy/pathology , AIDS-Associated Nephropathy/virology , Genetic Variation/genetics , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/virology , HIV Infections/complications , HIV Infections/pathology , HIV Infections/virology , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Risk Factors
8.
Histol Histopathol ; 35(12): 1483-1492, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33124682

ABSTRACT

To determine the role of the transplantation of bone marrow-derived mesenchymal stem cells (MSCs) in podocyte renewal, we studied BALB/C mice with or without adriamycin-induced acute kidney injury. MSCs were transplanted ectopically under the capsule of the left kidney or into the peritoneal cavity after the onset of kidney injury to test testing their local or systemic paracrine effects, respectively. Adriamycin produced increases in urine protein: creatinine ratios, blood urea nitrogen, and blood pressure, which improved after both renal subcapsular and intraperitoneal MSCs transplants. The histological changes of adriamycin kidney changes regressed in both kidneys and in only the ipsilateral kidney after intraperitoneal or renal subcapsular transplants indicating that the benefits of transplanted MSCs were related to the extent of paracrine factor distribution. Analysis of kidney tissues for p57-positive parietal epithelial cells (PECs) showed that MSC transplants restored adriamycin-induced decreases in the abundance of these cells to normal levels, although after renal subcapsular transplants these changes did not extend to contralateral kidneys. Moreover, adriamycin caused inflammatory activation of PECs with coexpression of CD44 and phospho-ERK, which was normalized in both or only ipsilateral kidneys depending on whether MSCs were transplanted in the peritoneal cavity or subcapsular space, respectively.


Subject(s)
Acute Kidney Injury/surgery , Cell Proliferation , Mesenchymal Stem Cell Transplantation , Podocytes/pathology , Regeneration , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Disease Models, Animal , Doxorubicin , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibrosis , Hyaluronan Receptors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Phosphorylation , Podocytes/metabolism , Signal Transduction , WT1 Proteins/metabolism
9.
Glycoconj J ; 37(6): 729-744, 2020 12.
Article in English | MEDLINE | ID: mdl-32915357

ABSTRACT

Apolipoprotein L1 (APOL1) wild type (G0) plays a role in the metabolism of sphingolipids, glycosphingolipids, sphingomyelin and ceramide, which constitute bioactive components of the lipid rafts (DRM). We asked whether APOL1 variants (APOL1-Vs) G1 and G2 carry the potential to alter the metabolism of sphingolipids in human podocytes. The sphingolipid pattern in HPs overexpressing either APOL1G0 or APOL1-Vs was analysed by using a thin mono- and bi-dimensional layer chromatography, mass-spectrometry and metabolic labelling with [1-3H]sphingosine. HP G0 and G1/G2-Vs exhibit a comparable decrease in lactosylceramide and an increase in the globotriaosylceramide content. An analysis of the main glycohydrolases activity involved in glycosphingolipid catabolism showed an overall decrease in the activeness of the tested enzymes, irrespective of the type of APOL1-Vs expression. Similarly, the high throughput cell live-based assay showed a comparable increased action of the plasma membrane glycosphingolipid-glycohydrolases in living cells independent of the genetic APOL1 expression profile. Importantly, the most significative modification of the sphingolipid pattern induced by APOL1-Vs occurred in DRM resulted with a drastic reduction of radioactivity associated with sphingolipids. G1/G2-Vs present a decrease amount of globotriaosylceramide and globopentaosylceramide compared to G0. Additionally, ceramide at the DRM site and lactosylceramide in general, showed a greatest fall in G1/G2 in comparison with G0. Additionally, the levels of glucosylceramide decreased only in the DRM of human podocytes overexpressing G1/G2-Vs. These findings suggest that altered sphingolipidsprofiles may contribute to the deranged functionality of the plasma membrane in APOL1 risk milieu.


Subject(s)
Apolipoprotein L1/genetics , Glycoside Hydrolases/genetics , Podocytes/metabolism , Sphingolipids/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Gene Expression Regulation/genetics , Humans , Metabolism , Polymorphism, Genetic/genetics , Sphingolipids/metabolism
10.
Cells ; 9(4)2020 04 17.
Article in English | MEDLINE | ID: mdl-32316697

ABSTRACT

Apolipoprotein L1 (APOL1)-miR193a axis has been reported to play a role in the maintenance of podocyte homeostasis. In the present study, we analyzed transcription factors relevant to miR193a in human podocytes and their effects on podocytes' molecular phenotype. The motif scan of the miR193a gene provided information about transcription factors, including YY1, WT1, Sox2, and VDR-RXR heterodimer, which could potentially bind to the miR193a promoter region to regulate miR193a expression. All structure models of these transcription factors and the tertiary structures of the miR193a promoter region were generated and refined using computational tools. The DNA-protein complexes of the miR193a promoter region and transcription factors were created using a docking approach. To determine the modulatory role of miR193a on APOL1 mRNA, the structural components of APOL1 3' UTR and miR193a-5p were studied. Molecular Dynamic (MD) simulations validated interactions between miR193a and YY1/WT1/Sox2/VDR/APOL1 3' UTR region. Undifferentiated podocytes (UPDs) displayed enhanced miR193a, YY1, and Sox2 but attenuated WT1, VDR, and APOL1 expressions, whereas differentiated podocytes (DPDs) exhibited attenuated miR193a, YY1, and Sox2 but increased WT1, VDR, APOL1 expressions. Inhibition of miR193a in UPDs enhanced the expression of APOL1 as well as of podocyte molecular markers; on the other hand, DPD-transfected with miR193a plasmid showed downing of APOL1 as well as podocyte molecular markers suggesting a causal relationship between miR193a and podocyte molecular markers. Silencing of YY1 and Sox2 in UPDs decreased the expression of miR193a but increased the expression of VDR, and CD2AP (a marker of DPDs); in contrast, silencing of WT1 and VDR in DPDs enhanced the expression of miR193a, YY1, and Sox2. Since miR193a-downing by Vitamin D receptor (VDR) agonist not only enhanced the mRNA expression of APOL1 but also of podocyte differentiating markers, suggest that down-regulation of miR193a could be used to enhance the expression of podocyte differentiating markers as a therapeutic strategy.


Subject(s)
Cell Differentiation/genetics , MicroRNAs/genetics , Phenotype , Podocytes/metabolism , Down-Regulation/genetics , Humans , MicroRNAs/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , SOXB1 Transcription Factors/genetics , Transcription Factors/metabolism , YY1 Transcription Factor/genetics
11.
Biochimie ; 174: 74-83, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32304771

ABSTRACT

EDA2R is a member of the large family of tumor necrosis factor receptor (TNFR). Previous studies suggested that EDA2R expression might be increased in the kidneys of diabetic mice. However, its mRNA and protein expression in kidneys were not analyzed; moreover, its role in the development of diabetic kidney disease was not explored. Here we analyzed the mRNA and protein expressions of EDA2R in diabetic kidneys and examined its role in the podocyte injury in high glucose milieu. By analysis with real-time PCR, Western blotting, we found that both the mRNA and protein levels of EDA2R were increased in the kidneys of diabetic mice. Immunohistochemical studies revealed that EDA2R expression was enhanced in both glomerular and tubular cells of diabetic mice and humans. In vitro studies, high glucose increased EDA2R expression in cultured human podocytes. Overexpression of EDA2R in podocytes promoted podocyte apoptosis and decreased nephrin expression. Moreover, ED2AR increased ROS generation in podocytes, while inhibiting ROS generation attenuates EDA2R-mediated podocyte injury. In addition, EDA2R silencing partially suppressed high glucose-induced ROS generation, apoptosis, and nephrin decrease. Our study demonstrated that high glucose increases EDA2R expression in kidney cells and that EDA2R induces podocyte apoptosis and dedifferentiation in high glucose milieu partially through enhanced ROS generation.


Subject(s)
Diabetes Mellitus/metabolism , Diabetic Nephropathies/metabolism , Kidney/metabolism , Podocytes/metabolism , Xedar Receptor/physiology , Animals , Apoptosis , Cells, Cultured , Female , Kidney/pathology , Membrane Proteins/metabolism , Mice , Podocytes/pathology , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism
12.
FEBS J ; 287(10): 2000-2022, 2020 05.
Article in English | MEDLINE | ID: mdl-31714001

ABSTRACT

We evaluated alterations in the structural configurations of channels and activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome formation in apolipoprotein L1 (APOL1) risk and nonrisk milieus. APOL1G1- and APOL1G2-expressing podocytes (PD) displayed enhanced K+ efflux, induction of pyroptosis, and escalated transcription of interleukin (IL)-1ß and IL-18. APOL1G1- and APOL1G2-expressing PD promoted the transcription as well as translation of proteins involved in the formation of inflammasomes. Since glyburide (a specific inhibitor of K+ efflux channels) inhibited the transcription of NLRP3, IL-1ß, and IL-18, the role of K+ efflux in the activation of inflammasomes in APOL1 risk milieu was implicated. To evaluate the role of structural alterations in K+ channels in plasma membranes, bioinformatics studies, including molecular dynamic simulation, were carried out. Superimposition of bioinformatics reconstructions of APOL1G0, G1, and G2 showed several aligned regions. The analysis of pore-lining residues revealed that Ser342 and Tyr389 are involved in APOL1G0 pore formation and the altered conformations resulting from the Ser342Gly and Ile384Met mutation in the case of APOLG1 and deletion of the Tyr389 residue in the case of APOL1G2 are expected to alter pore characteristics, including K+ ion selectivity. Analysis of multiple membrane (lipid bilayer) models of interaction with the peripheral protein, integral membrane protein, and multimer protein revealed that for an APOL1 multimer model, APOL1G0 is not energetically favorable while the APOL1G1 and APOL1G2 moieties favor the insertion of multiple ion channels into the lipid bilayer. We conclude that altered pore configurations carry the potential to facilitate K+ ion transport in APOL1 risk milieu.


Subject(s)
Apolipoprotein L1/genetics , Inflammasomes/genetics , Ion Channels/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Animals , Cell Membrane/genetics , Cell Membrane/ultrastructure , Glyburide/pharmacology , Humans , Inflammasomes/drug effects , Inflammasomes/ultrastructure , Interleukin-18/genetics , Interleukin-1beta/genetics , Ion Channels/antagonists & inhibitors , Macrophages/ultrastructure , NLR Family, Pyrin Domain-Containing 3 Protein/ultrastructure , Podocytes/drug effects , Podocytes/ultrastructure , Pyroptosis/drug effects , Pyroptosis/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
13.
Dis Model Mech ; 12(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31727625

ABSTRACT

Notch pathway activation plays a central role in the pathogenesis of many glomerular diseases. We have previously shown that Notch4 expression was upregulated in various renal cells in human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) patients and rodent models of HIVAN. In this study, we examined whether the Notch pathway can be distinctly activated by HIV-1 gene products and whether Notch4, in particular, can influence disease progression. Using luciferase reporter assays, we did not observe activation of the NOTCH4 promoter with the HIV protein Nef in podocytes. Further, we observed upregulated expression of a gamma secretase complex protein, presenilin 1, but not Notch4, in podocytes infected with an HIV-1 expression construct. To assess the effects of Notch4 on HIVAN disease progression, we engineered Tg26 mice with global deletion of the Notch4 intracellular domain (Notch4dl ), which is required for signaling function. These mice (Notch4d1/Tg26+ ) showed a significant improvement in renal function and a significant decrease in mortality compared to Tg26 mice. Histological examination of kidneys showed that Notch4d1/Tg26+ mice had overall glomerular, tubulointerstitial injury and a marked decrease in interstitial inflammation. A significant decrease in the proliferating cells was observed in the tubulointerstitial compartments of Notch4d1/Tg26+ mice. Consistent with the diminished inflammation, kidneys from Notch4d1/Tg26+ mice also showed a significant decrease in expression of the inflammatory cytokine transcripts Il-6 and Ccl2, as well as the master inflammatory transcription factor NF-κB (Nfkb1 transcripts and p65 protein). These data identify Notch4 as an important mediator of tubulointerstitial injury and inflammation in HIVAN and a potential therapeutic target.


Subject(s)
AIDS-Associated Nephropathy/metabolism , Inflammation/metabolism , NF-kappa B p50 Subunit/metabolism , Receptor, Notch4/metabolism , Animals , Cell Proliferation , Crosses, Genetic , Disease Models, Animal , Disease Progression , Female , Gene Deletion , HEK293 Cells , Humans , Kidney/metabolism , Male , Mice , Mice, Transgenic , Podocytes/metabolism , Signal Transduction , Transcription Factor RelA/metabolism , Treatment Outcome , nef Gene Products, Human Immunodeficiency Virus/metabolism
14.
Am J Physiol Renal Physiol ; 317(2): F463-F477, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31241995

ABSTRACT

The apolipoprotein L1 (APOL1) gene is unique to humans and gorillas and appeared ~33 million years ago. Since the majority of the mammals do not carry APOL1, it seems to be dispensable for kidney function. APOL1 renal risk variants (RRVs; G1 and G2) are associated with the development as well as progression of chronic kidney diseases (CKDs) at higher rates in populations with African ancestry. Cellular expression of two APOL1 RRVs has been demonstrated to induce cytotoxicity, including necrosis, apoptosis, and pyroptosis, in several cell types including podocytes; mechanistically, these toxicities were attributed to lysosomal swelling, K+ depletion, mitochondrial dysfunction, autophagy blockade, protein kinase receptor activation, ubiquitin D degradation, and endoplasmic reticulum stress; notably, these effects were found to be dose dependent and occurred only in overtly APOL1 RRV-expressing cells. However, cellular protein expressions as well as circulating blood levels of APOL1 RRVs were not elevated in patients suffering from APOL1 RRV-associated CKDs. Therefore, the question arises as to whether it is gain or loss of function on the part of APOL1 RRVs contributing to kidney cell injury. The question seems to be more pertinent after the recognition of the role of APOL1 nonrisk (G0) in the transition of parietal epithelial cells and preservation of the podocyte molecular phenotype through modulation of the APOL1-miR-193a axis. With this background, the present review analyzed the available literature in terms of the known function of APOL1 nonrisk and how the loss of these functions could have contributed to two APOL1 RRV-associated CKDs.


Subject(s)
Apolipoprotein L1/genetics , Apolipoprotein L1/physiology , Kidney/physiology , Animals , Humans , Kidney/cytology , Kidney/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/physiopathology
15.
Am J Physiol Cell Physiol ; 317(2): C209-C225, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31116585

ABSTRACT

We hypothesized that a functional apolipoprotein LI (APOL1)-miR193a axis (inverse relationship) preserves, but disruption alters, the podocyte molecular phenotype through the modulation of autophagy flux. Podocyte-expressing APOL1G0 (G0-podocytes) showed downregulation but podocyte-expressing APOL1G1 (G1-podocytes) and APOL1G2 (G2-podocytes) displayed enhanced miR193a expression. G0-, G1-, and G2-podocytes showed enhanced expression of light chain (LC) 3-II and beclin-1, but a disparate expression of p62 (low in wild-type but high in risk alleles). G0-podocytes showed enhanced, whereas G1- and G2-podocytes displayed decreased, phosphorylation of Unc-51-like autophagy-activating kinase (ULK)1 and class III phosphatidylinositol 3-kinase (PI3KC3). Podocytes overexpressing miR193a (miR193a-podocytes), G1, and G2 showed decreased transcription of PIK3R3 (PI3KC3's regulatory unit). Since 3-methyladenine (3-MA) enhanced miR193a expression but inhibited PIK3R3 transcription, it appears that 3-MA inhibits autophagy and induces podocyte dedifferentiation via miR193a generation. miR193a-, G1-, and G2-podocytes also showed decreased phosphorylation of mammalian target of rapamycin (mTOR) that could repress lysosome reformation. G1- and G2-podocytes showed enhanced expression of run domain beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon); however, its silencing prevented their dedifferentiation. Docking, protein-protein interaction, and immunoprecipitation studies with antiautophagy-related gene (ATG)14L, anti-UV radiation resistance-associated gene (UVRAG), or Rubicon antibodies suggested the formation of ATG14L complex I and UVRAG complex II in G0-podocytes and the formation of Rubicon complex III in G1- and G2-podocytes. These findings suggest that the APOL1 risk alleles favor podocyte dedifferentiation through blockade of multiple autophagy pathways.


Subject(s)
Apolipoprotein L1/metabolism , Autophagy , Cell Dedifferentiation , MicroRNAs/metabolism , Podocytes/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Apolipoprotein L1/genetics , Autophagosomes/metabolism , Autophagosomes/pathology , Autophagy-Related Proteins/metabolism , Cell Line, Transformed , Gene Expression Regulation , Humans , MicroRNAs/genetics , Molecular Dynamics Simulation , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Podocytes/pathology , Protein Interaction Maps , Signal Transduction , Tumor Suppressor Proteins/metabolism
16.
Biochimie ; 160: 113-121, 2019 May.
Article in English | MEDLINE | ID: mdl-30831151

ABSTRACT

BACKGROUND: Increased DAN protein (Grem1, Grem2, Grem3, Cerberus, NBL1, SOST, and USAG1) levels are often associated with severe disease-states in adult kidneys. Grem1, SOST, and USAG1 have been demonstrated to be upregulated and play a critical role in the progression of diabetic nephropathy (DN); however, the expression and the role of other DAN family members in DN have not been reported yet. In this study, we investigated the expression and the role of Grem2 in the development of renal lesions in mice with type 2 DN. METHODS: Fourteen-week-old BTBRob/ob (a mouse model of type 2 diabetes mellitus) and control (BTBR, wild type) mice were evaluated for renal functional and structural biomarkers. Urine was collected for protein content assay, and renal tissues were harvested for molecular analysis with real-time PCR, Western blotting, and immunohistochemistry. In vitro studies, human podocytes were transfected with Grem2 plasmid and were evaluated for apoptosis (morphologic assay and Western blotting). To evaluate the Grem2-mediated downstream signaling, the phosphorylation status of Smad2/3 and Smad1/5/8 was assessed. To establish a causal relationship, the effect of SIS3 (an inhibitor for Samd2/3) and BMP-7 (an agonist for Smad1/5/8) was evaluated on Germ2-induced podocyte apoptosis. RESULTS: BTBRob/ob mice showed elevated urinary protein levels. Renal tissues of BTBRob/ob mice showed an increased expression of Grem2; both glomerular and tubular cells displayed enhanced Grem2 expression. In vitro studies, high glucose increased Grem2 expression in cultured human podocytes, whereas, Grem2 silencing partially protected podocyte from high glucose-induced apoptosis. Overexpression of Grem2 in podocytes not only increased Bax/Bcl2 expression ratio but also promoted podocyte apoptosis; moreover, an overexpression of Grem2 increased the phosphorylation of Smad2/3 and decreased the phosphorylation of Smad1/5/8; furthermore, SIS3 and BMP-7 attenuated Grem2-induced podocyte apoptosis. CONCLUSIONS: High glucose increases Grem2 expression in kidney cells. Grem2 mediates podocyte apoptosis through Smads.


Subject(s)
Apoptosis , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/pathology , Glucose/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Podocytes/pathology , Animals , Cytokines , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Obese , Phosphorylation , Podocytes/drug effects , Podocytes/metabolism , Signal Transduction , Sweetening Agents/pharmacology , Up-Regulation
17.
Sci Rep ; 9(1): 3582, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837512

ABSTRACT

APOL1-miR193a axis participates in the preservation of molecular phenotype of differentiated podocytes (DPDs). We examined the hypothesis that APOL1 (G0) preserves, but APOL1 risk alleles (G1 and G2) disrupt APOL1-miR193a axis in DPDs. DPDG0s displayed down-regulation of miR193a, but upregulation of nephrin expression. DPDG1s/G2s exhibited an increase in miR193a and down-regulation of the expression of adherens complex's constituents (CD2AP, nephrin, and dendrin). DPDG0s showed decreased Cathepsin L, enhanced dynamin expressions, and the intact actin cytoskeleton. On the contrary, DPDG1s/G2s displayed an increase in Cathepsin L, but down-regulation of dynamin expressions and disorganization of the actin cytoskeleton. APOL1 silencing enhanced miR193a and Cathepsin L, but down-regulated dynamin expressions. DPDG1s/G2s displayed nuclear import of dendrin, indicating an occurrence of destabilization of adherens complexes in APOL1 risk milieu. These findings suggest that DPDG1s and DPDG2s developed disorganized actin cytoskeleton as a consequence of disrupted APOL1-miR193a axis. Interestingly, docking and co-labeling studies suggested an interaction between APOL1 and CD2AP. APOL1G1/G1 and APOL1G1/G2 transgenic mice displayed nuclear import of dendrin indicating destabilization of adherens complexes in podocytes; moreover, these mice showed a four-fold increase in urinary albumin to creatinine ratio and development of focal segmental glomerular lesions.


Subject(s)
Actin Cytoskeleton/metabolism , Apolipoprotein L1/metabolism , Podocytes/cytology , Adaptor Proteins, Signal Transducing/metabolism , Alleles , Animals , Apolipoprotein L1/chemistry , Apolipoprotein L1/genetics , Cell Differentiation , Cytoskeletal Proteins/metabolism , Gene Expression Regulation , Humans , Mice , Models, Molecular , Podocytes/metabolism , Protein Conformation , Signal Transduction
18.
Am J Pathol ; 188(11): 2508-2528, 2018 11.
Article in English | MEDLINE | ID: mdl-30201495

ABSTRACT

Human parietal epithelial cells (PECs) are progenitor cells that sustain podocyte homeostasis. We hypothesized that the lack of apolipoprotein (APO) L1 ensures the PEC phenotype, but its induction initiates PEC transition (expression of podocyte markers). APOL1 expression and down-regulation of miR193a coincided with the expression of podocyte markers during the transition. The induction of APOL1 also stimulated transition markers in human embryonic kidney cells (cells with undetectable APOL1 protein expression). APOL1 silencing in PECs up-regulated miR193a expression, suggesting the possibility of a reciprocal feedback relationship between APOL1 and miR193a. HIV, interferon-γ, and vitamin D receptor agonist down-regulated miR193a expression and induced APOL1 expression along with transition markers in PECs. Luciferase assay suggested a putative interaction between miR193a and APOL1. Since silencing of APOL1 attenuated HIV-, vitamin D receptor agonist-, miR193a inhibitor-, and interferon-γ-induced expression of transition markers, APOL1 appears to be a critical functional constituent of the miR193a- APOL1 axis in PECs. This notion was confirmed by further enhanced expression of PEC markers in APOL1 mRNA-silenced PECs. In vivo studies, glomeruli in patients with HIV, and HIV/APOL1 transgenic mice had foci of PECs expressing synaptopodin, a transition marker. APOL1 likely regulates PEC molecular phenotype through modulation of miR193a expression, and APOL1 and miR193a share a reciprocal feedback relationship.


Subject(s)
AIDS-Associated Nephropathy/pathology , Apolipoprotein L1/metabolism , Epithelial Cells/pathology , Gene Expression Regulation , Kidney Glomerulus/pathology , MicroRNAs/genetics , AIDS-Associated Nephropathy/metabolism , AIDS-Associated Nephropathy/virology , Animals , Apolipoprotein L1/genetics , Case-Control Studies , Epithelial Cells/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Kidney Glomerulus/metabolism , Mice , Mice, Transgenic
19.
Biosci Rep ; 38(4)2018 08 31.
Article in English | MEDLINE | ID: mdl-29967295

ABSTRACT

Two coding sequence variants (G1 and G2) of Apolipoprotein L1 (APOL1) gene have been implicated as a higher risk factor for chronic kidney diseases (CKD) in African Americans when compared with European Americans. Previous studies have suggested that the APOL1 G1 and G2 variant proteins are more toxic to kidney cells than the wild-type APOL1 G0, but the underlying mechanisms are poorly understood. To determine whether endoplasmic reticulum (ER) stress contributes to podocyte toxicity, we generated human podocytes (HPs) that stably overexpressed APOL1 G0, G1, or G2 (Vec/HPs, G0/HPs, G1/HPs, and G2/HPs). Propidium iodide staining showed that HP overexpressing the APOL1 G1 or G2 variant exhibited a higher rate of necrosis when compared with those overexpressing the wild-type G0 counterpart. Consistently, the expression levels of nephrin and podocin proteins were significantly decreased in the G1- or G2-overexpressing cells despite the maintenance of their mRNA expressions levels. In contrast, the expression of the 78-kDa glucose-regulated protein ((GRP78), also known as the binding Ig protein, BiP) and the phosphorylation of the eukaryotic translation initiation factor 1 (eIF1) were significantly elevated in the G1/HPs and G2/HPs, suggesting a possible occurrence of ER stress in these cells. Furthermore, ER stress inhibitors not only restored nephrin protein expression, but also provided protection against necrosis in G1/HPs and G2/HPs, suggesting that APOL1 risk variants cause podocyte injury partly through enhancing ER stress.


Subject(s)
Apolipoprotein L1/genetics , Endoplasmic Reticulum Stress , Podocytes/pathology , Renal Insufficiency, Chronic/genetics , Amino Acid Sequence , Apolipoprotein L1/chemistry , Base Sequence , Cell Line , Endoplasmic Reticulum Chaperone BiP , Genetic Variation , Humans , Podocytes/metabolism , Renal Insufficiency, Chronic/pathology
20.
Biosci Rep ; 38(3)2018 06 29.
Article in English | MEDLINE | ID: mdl-29572389

ABSTRACT

Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinic reports indicate cigarette smoking is an independent risk factor for chronic kidney disease including DN; however, the underlying molecular mechanisms are not clear. Recent studies have demonstrated that nicotine, one of the active compounds in cigarette smoke, contributes to the pathogenesis of the cigarette smoking-accelerated chronic kidney disease. One of the characteristics of DN is the expansion of mesangium, a precursor of glomerular sclerosis. In the present study, we examined the involvement of Wnt/ß-catenin pathway in nicotine-mediated mesangial cell growth in high glucose milieu. Primary human renal mesangial cells were treated with nicotine in the presence of normal (5 mM) or high glucose (30 mM) followed by evaluation for cell growth. In the presence of normal glucose, nicotine increased both the total cell numbers and Ki-67 positive cell ratio, indicating that nicotine stimulated mesangial cell proliferation. Although high glucose itself also stimulated mesangial cell proliferation, nicotine further enhanced the mitogenic effect of high glucose. Similarly, nicotine increased the expression of Wnts, ß-catenin, and fibronectin in normal glucose medium, but further increased mesangial cell expression of these proteins in high glucose milieu. Pharmacological inhibition or genetic knockdown of ß-catenin activity or expression with specific inhibitor FH535 or siRNA significantly impaired the nicotine/glucose-stimulated cell proliferation and fibronectin production. We conclude that nicotine may enhance renal mesangial cell proliferation and fibronectin production under high glucose milieus partly through activating Wnt/ß-catenin pathway. Our study provides insight into molecular mechanisms involved in DN.


Subject(s)
Diabetic Nephropathies/genetics , Fibronectins/biosynthesis , Nicotine/adverse effects , Renal Insufficiency, Chronic/genetics , beta Catenin/genetics , Cell Proliferation/drug effects , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/pathology , Fibronectins/chemistry , Gene Expression Regulation/drug effects , Glucose/pharmacology , Humans , Mesangial Cells/drug effects , Nicotine/pharmacology , Primary Cell Culture , RNA, Small Interfering/genetics , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Sulfonamides/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...