Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 265(Pt A): 115019, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32585399

ABSTRACT

The effect of relative humidity and temperature on the submicron aerosol variability and its ageing process was studied over a high altitude site, Mahabaleshwar in south-west India. The mass composition of non-refractory particulate matter of 1 µm (NR-PM1) size was obtained using Time of Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) along with the measurements on a few trace gases during winter (December 2017-February 2018) and summer season (20th March - 5th May 2018). Sulfate exhibited strong dependence on the relative humidity (RH) as its mass fraction increased with the increase in RH. The Sulfate oxidation ratio (SOR) calculated during summer season also showed an increasing trend with RH indicating the influence of aqueous phase oxidation on sulfate fraction. On the other hand, OOA showed remarkable enhancement in its mass fraction with the increase in temperature along with the corresponding increase in f44 and tropospheric ozone. OOA, ozone and f44 ratio increased 14-34%, 8-26% and 25-43% respectively with the increase in temperature from 18 to 30 °C. This is indicative of the dominance of photochemical ageing processes during high temperature conditions. The extent of photochemical ageing was found to be higher during summer season (mean temperature ∼25.4 ± 2.6 °C) as compared to winter season (mean temperature ∼20.5 ± 2.6 °C). The nitrate diurnal was majorly governed by gas to particle partitioning process during winter season, whereas the summertime nitrate diurnal was influenced primarily by its formation rate. The non parametric wind regression analysis revealed that the mass concentration during winter was majorly contributed by distant sources from north east direction while during summer the local sources were more dominant.


Subject(s)
Air Pollutants/analysis , Aerosols/analysis , Altitude , Environmental Monitoring , India , Particulate Matter/analysis , Seasons
2.
Environ Sci Pollut Res Int ; 26(7): 7071-7081, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30645743

ABSTRACT

This study presents the characteristics of black carbon aerosol (BC) over a high-altitude site, Mahabaleshwar during the monsoon season. The mass concentration of BC exhibits a morning peak and a daytime build-up with a mean mass concentration of 303 ± 142 ng m-3. The simultaneous measurements of aerosol particle number concentration (PNC), cloud condensation nuclei concentration (CCN), and non-refractory particulate matter less than 1 µm size (NR-PM1) were also made by using a Wide-Range Aerosol Spectrometer (WRAS), CCN counter and Aerosol Chemical Speciation Monitor (ACSM) respectively. The source apportionment using wavelength-dependent light absorption model reveals the dominance by wood burning sources during morning hours and traffic sources during remaining hours of the day. The diurnal variation of PNC follows the variability of BC mass concentration. However, CCN concentrations were high during the morning hours coinciding with the increased fractional contribution of organics. The k-means clustering coupled with fuzzy algorithm highlights the effect of different sources on aerosol size distribution. On the basis of size distribution curve, the 3 clusters were attributed to wood burning (mean diameter range: 50-100 nm), traffic (30-50 nm), and background aerosols (65-95 nm). The combined analysis of k-means clustering, fractional contribution of organics, and kappa variation suggests that higher CCN concentration during morning is mainly attributed to probable emission of the water-soluble organic/inorganic compounds from wood burning.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Soot/analysis , Aerosols , Carbon , India , Particulate Matter , Seasons , Water , Wood
3.
Environ Sci Pollut Res Int ; 20(8): 5737-52, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23463279

ABSTRACT

Total suspended particulate (TSP) samples were collected during dust, haze, and two festival events (Holi and Diwali) from February 2009 to June 2010. Pollutant gases (NO2, SO2, and O3) along with the meteorological parameters were also measured during the four pollution events at Agra. The concentration of pollutant gases decreases during dust events (DEs), but the levels of the gases increase during other pollution events indicating the impact of anthropogenic emissions. The mass concentrations were about two times higher during pollution events than normal days (NDs). High TSP concentrations during Holi and Diwali events may be attributed to anthropogenic activities while increased combustion sources in addition to stagnant meteorological conditions contributed to high TSP mass during haze events. On the other hand, long-range transport of atmospheric particles plays a major role during DEs. In the dust samples, Ca(2+), Cl(-), NO3 (-), and SO4 (2-) were the most abundant ions and Ca(2+) alone accounted for 22 % of the total ionic mass, while during haze event, the concentrations of secondary aerosols species, viz., NO3 (-), SO4 (2-), and NH4 (+), were 3.6, 3.3, and 5.1 times higher than the normal days. During Diwali, SO4 (2-) concentration (17.8 µg m(-3)) was highest followed by NO3 (-), K(+), and Cl(-) while the Holi samples were strongly enriched with Cl(-) and K(+) which together made up 32.7 % of the total water-soluble ions. The ion balances indicate that the haze samples were acidic. On the other hand, Holi, Diwali, and DE samples were enriched with cations. The carbonaceous aerosol shows strong variation with the highest concentration during Holi followed by haze, Diwali, DEs, and NDs. However, the secondary organic carbon concentration follows the order haze > DEs > Diwali > Holi > NDs. The scanning electron microscope/EDX results indicate that KCl and carbon-rich particles were more dominant during Holi and haze events while DE samples were enriched with particles of crustal origin.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , Chlorine/analysis , Environmental Monitoring , India , Metals/analysis , Nitrates/analysis , Nitrogen Dioxide/analysis , Ozone/analysis , Quaternary Ammonium Compounds/analysis , Sulfates/analysis , Sulfur Dioxide/analysis , Wind
4.
ScientificWorldJournal ; 2012: 272853, 2012.
Article in English | MEDLINE | ID: mdl-22629126

ABSTRACT

In the present study, the concentrations of three volatile organic compounds (VOCs), namely, acronym for benzene, toluene, and xylenes (BTX) were assessed because of their role in the tropospheric chemistry. Two representative sites, a roadside and a petrol pump, were chosen for sample collection. VOCs were collected using SKC-activated charcoal tubes and SKC personal sampler and characterized by gas chromatograph using flame ionization detector. Among BTX, benzene had the highest concentration. At the roadside, mean concentration of benzene, toluene, o-,m-xylene, and p-xylene were 14.7 ± 2.4 µgm(-3), 8.1 ± 1.2 µgm(-3), 2.1 ± 0.8 µgm(-3), and 5.1 ± 1.2 µgm(-3), respectively. At the petrol pump, the mean concentrations of benzene, toluene, o-,m-xylene and p-xylene were 19.5 ± 3.7 µgm(-3), 12.9 ± 1.1 µgm(-3), 3.6 ± 0.5 µgm(-3) and 11.1 ± 1.5 µgm(-3), respectively, and were numerically higher by a fraction of 2. Monthly variation of BTX showed maximum concentration in winter. Inter-species ratios and inter-species correlation indicated traffic as the major source of BTX. Extracts of samples were positive in both Salmonella typhimurium tester strains TA98 and TA100 without metabolic activation suggesting the presence of direct mutagens in ambient air that can cause both frame-shift and base-pair mutation. The mutagenic response was greater for TA100 than TA98 suggesting greater activity for base-pair mutagenicity than frame-shift mutagenicity and was found to be statistically significant.


Subject(s)
Mutagens/toxicity , Mutation/drug effects , Salmonella typhimurium/drug effects , Vehicle Emissions/analysis , Vehicle Emissions/toxicity , Volatile Organic Compounds/analysis , Volatile Organic Compounds/toxicity , India , Mutation/genetics , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...