Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 247(18): 1680-1690, 2022 09.
Article in English | MEDLINE | ID: mdl-36000172

ABSTRACT

The pathophysiology of Parkinson's disease (PD) is a complex process of the interaction between genetic and environmental factors. Studies on the genetic component of PD have predominantly focused on single nucleotide polymorphisms (SNPs) using a cross-sectional case-control design in large genome-wide association studies. This approach while giving insight into a significant portion of the genetics of PD does not fully account for all the genetic components resulting in missing heritability. In this study, we approached this problem by focusing on the non-reference genome transposable elements (TEs) and their impact on the progression of PD using a longitudinal study design within the Parkinson's progression markers initiative (PPMI) cohort. We analyzed 2886 Alu repeats, 360 LINE1 and 128 SINE-VNTR-Alus (SVAs) that were called from the whole-genome sequence data which are not within the reference genome. The presence or absence of these non-reference TE variants is known as a retrotransposon insertion polymorphism, and measuring this polymorphism describes the impact of TEs on the traits. The variations for the presence or absence of the non-reference TE elements were modeled to align with the changes in the 114 outcome measures during the five-year follow-up period of the PPMI cohort. Linear mixed-effects models were used, and many TEs were found to have a highly significant effect on the longitudinal changes in the clinically important PD outcomes such as UPDRS subscale II, UPDRS total scores, and modified Schwab and England ADL scale. In addition, the progression of several imaging and functional measures, including the Caudate/Putamen ratio and levodopa equivalent daily dose (LEDD) were also significantly affected by the TEs. In conclusion, this study identified the overwhelming effect of the non-reference TEs on the progression of PD and is a good example of the impact the variations in the "junk DNA" have on complex diseases.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , DNA Transposable Elements/genetics , Longitudinal Studies , Cross-Sectional Studies , Levodopa/genetics , Genome-Wide Association Study , Retroelements , Polymorphism, Single Nucleotide/genetics , Disease Progression
2.
Exp Biol Med (Maywood) ; 247(9): 756-764, 2022 05.
Article in English | MEDLINE | ID: mdl-35387528

ABSTRACT

SINE-VNTR-Alus (SVAs) are the youngest retrotransposon family in the human genome. Their ongoing mobilization has generated genetic variation within the human population. At least 24 insertions to date, detailed in this review, have been associated with disease. The predominant mechanisms through which this occurs are alterations to normal splicing patterns, exonic insertions causing loss-of-function mutations, and large genomic deletions. Dissecting the functional impact of these SVAs and the mechanism through which they cause disease provides insight into the consequences of their presence in the genome and how these elements could influence phenotypes. Many of these disease-associated SVAs have been difficult to characterize and would not have been identified through routine analyses. However, the number identified has increased in recent years as DNA and RNA sequencing data became more widely available. Therefore, as the search for complex structural variation in disease continues, it is likely to yield further disease-causing SVA insertions.


Subject(s)
Alu Elements , Minisatellite Repeats , Genome, Human , Humans , Retroelements/genetics
3.
Sci Rep ; 11(1): 7934, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846426

ABSTRACT

Parkinson's disease (PD) is associated with neuronal damage in the brain and gut. This work compares changes in the enteric nervous system (ENS) of commonly used mouse models of PD that exhibit central neuropathy and a gut phenotype. Enteric neuropathy was assessed in five mouse models: peripheral injection of MPTP; intracerebral injection of 6-OHDA; oral rotenone; and mice transgenic for A53T variant human α-synuclein with and without rotenone. Changes in the ENS of the colon were quantified using pan-neuronal marker, Hu, and neuronal nitric oxide synthase (nNOS) and were correlated with GI function. MPTP had no effect on the number of Hu+ neurons but was associated with an increase in Hu+ nuclear translocation (P < 0.04). 6-OHDA lesioned mice had significantly fewer Hu+ neurons/ganglion (P < 0.02) and a reduced proportion of nNOS+ neurons in colon (P < 0.001). A53T mice had significantly fewer Hu+ neurons/area (P < 0.001) and exhibited larger soma size (P < 0.03). Treatment with rotenone reduced the number of Hu+ cells/mm2 in WT mice (P < 0.006) and increased the proportion of Hu+ translocated cells in both WT (P < 0.02) and A53T mice (P < 0.04). All PD models exhibited a degree of enteric neuropathy, the extent and type of damage to the ENS, however, was dependent on the model.


Subject(s)
Gastrointestinal Tract/pathology , Intestinal Pseudo-Obstruction/pathology , Parkinson Disease/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Acute Disease , Animals , Cell Count , Chronic Disease , Colon/drug effects , Colon/pathology , Disease Models, Animal , Feces , Ganglia/drug effects , Ganglia/pathology , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/pathology , Nitric Oxide Synthase Type I/metabolism , Oxidopamine , Phenotype , Rotenone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...