Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 23(4): 424-31, 2010 May.
Article in English | MEDLINE | ID: mdl-20101607

ABSTRACT

Absolute quantitative measures of breast cancer tissue metabolites can increase our understanding of biological processes. Electronic REference To access In vivo Concentrations (ERETIC) was applied to high resolution magic angle spinning MR spectroscopy (HR MAS MRS) to quantify metabolites in intact breast cancer samples. The ERETIC signal was calibrated using solutions of creatine and TSP. The largest relative errors of the ERETIC method were 8.4%, compared to 4.4% for the HR MAS MRS method using TSP as a standard. The same MR experimental procedure was applied to intact tissue samples from breast cancer patients with clinically defined good (n = 13) and poor (n = 16) prognosis. All samples were examined by histopathology for relative content of different tissue types and proliferation index (MIB-1) after MR analysis. The resulting spectra were analyzed by quantification of tissue metabolites (ß-glucose, lactate, glycine, myo-inositol, taurine, glycerophosphocholine, phosphocholine, choline and creatine), by peak area ratios and by principal component analysis. We found a trend toward lower concentrations of glycine in patients with good prognosis (1.1 µmol/g) compared to patients with poor prognosis (1.9 µmol/g, p = 0.067). Tissue metabolite concentrations (except for ß-glucose) were also found to correlate to the fraction of tumor, connective, fat or glandular tissue by Pearson correlation analysis. Tissue concentrations of ß-glucose correlated to proliferation index (MIB-1) with a negative correlation factor (-0.45, p = 0.015), consistent with increased energy demand in proliferating tumor cells. By analyzing several metabolites simultaneously, either in ratios or by metabolic profiles analyzed by PCA, we found that tissue metabolites correlate to patients' prognoses and health status five years after surgery. This study shows that the diagnostic and prognostic potential in MR metabolite analysis of breast cancer tissue is greater when combining multiple metabolites (MR Metabolomics).


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Female , Humans , Magnetic Resonance Spectroscopy/methods , Principal Component Analysis , Prognosis
2.
J Magn Reson Imaging ; 22(4): 492-500, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16161073

ABSTRACT

PURPOSE: To evaluate manganese (Mn2+)-enhanced MRI in a longitudinal study of normal and injured rat visual projections. MATERIALS AND METHODS: MRI was performed 24 hours after unilateral intravitreal injection of MnCl2 (150 nmol) into adult Fischer rats that were divided into four groups: 1) controls (N = 5), 2) dose-response (N = 10, 0.2-200 nmol), 3) time-response with repeated MRI during 24-168 hours post injection (N = 4), and 4) optic nerve crush (ONC) immediately preceding the MnCl2 injection (N = 7). Control and ONC animals were reinjected with MnCl2 20 days after the first injection, and MRI was performed 24 hours later. RESULTS: In the control group, the optic projection was visualized from the retina to the superior colliculus, with indications of transsynaptic transport to the cortex. There was a semilogarithmic relationship between the Mn2+ dose and Mn2+ enhancement from 4 to 200 nmol, and the enhancement decayed gradually to 0 by 168 hours. No Mn2+-enhanced signal was detected distal to the ON crush site. In the control group, similar enhancement was obtained after the first and second MnCl2 injections, while in the ONC group the enhancement proximal to the crush site was reduced 20 days post lesion (20 dpl). CONCLUSION: Mn2+-enhanced MRI is a viable method for temporospatial visualization of normal and injured ON in the adult rat. The observed reduction in the Mn2+ signal proximal to the ONC is probably a result of retrograde damage to the retinal ganglion cells, and not of Mn2+ toxicity.


Subject(s)
Magnesium Chloride/pharmacology , Optic Nerve Injuries/physiopathology , Visual Pathways/physiopathology , Animals , Dose-Response Relationship, Drug , Female , Rats , Rats, Inbred F344 , Visual Pathways/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...