Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Res ; 72(1): 14-33, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37682455

ABSTRACT

SARS-CoV-2 (COVID-19) pandemic has been an unpredicted burden on global healthcare system by infecting over 700 million individuals, with approximately 6 million deaths worldwide. COVID-19 significantly impacted all sectors, but it very adversely affected the healthcare system. These effects were much more evident in the resource limited part of the world. Individuals with acute conditions were also severely impacted. Although classical COVID-19 diagnostics such as RT-PCR and rapid antibody testing have played a crucial role in reducing the spread of infection, these diagnostic techniques are associated with certain limitations. For instance, drawback of RT-PCR diagnostics is that due to degradation of viral RNA during shipping, it can give false negative results. Also, rapid antibody testing majorly depends on the phase of infection and cannot be performed on immune compromised individuals. These limitations in current diagnostic tools require the development of nanodiagnostic tools for early detection of COVID-19 infection. Therefore, the SARS-CoV-2 outbreak has necessitated the development of specific, responsive, accurate, rapid, low-cost, and simple-to-use diagnostic tools at point of care. In recent years, early detection has been a challenge for several health diseases that require prompt attention and treatment. Disease identification at an early stage, increased imaging of inner health issues, and ease of diagnostic processes have all been established using a new discipline of laboratory medicine called nanodiagnostics, even before symptoms have appeared. Nanodiagnostics refers to the application of nanoparticles (material with size equal to or less than 100 nm) for medical diagnostic purposes. The special property of nanomaterials compared to their macroscopic counterparts is a lesser signal loss and an enhanced electromagnetic field. Nanosize of the detection material also enhances its sensitivity and increases the signal to noise ratio. Microchips, nanorobots, biosensors, nanoidentification of single-celled structures, and microelectromechanical systems are some of the most modern nanodiagnostics technologies now in development. Here, we have highlighted the important roles of nanotechnology in healthcare sector, with a detailed focus on the management of the COVID-19 pandemic. We outline the different types of nanotechnology-based diagnostic devices for SARS-CoV-2 and the possible applications of nanomaterials in COVID-19 treatment. We also discuss the utility of nanomaterials in formulating preventive strategies against SARS-CoV-2 including their use in manufacture of protective equipment, formulation of vaccines, and strategies for directly hindering viral infection. We further discuss the factors hindering the large-scale accessibility of nanotechnology-based healthcare applications and suggestions for overcoming them.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Precision Medicine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Drug Treatment , Pandemics/prevention & control , Nanotechnology
2.
Front Chem ; 10: 848014, 2022.
Article in English | MEDLINE | ID: mdl-35242745

ABSTRACT

Ezetimibe (EZT) being an anticholesterol drug is frequently used for the reduction of elevated blood cholesterol levels. With the purpose of improving the physicochemical properties of EZT, in the present study, cocrystals of ezetimibe with L-proline have been studied. Theoretical geometry optimization of EZT-L-proline cocrystal, energies, and structure-activity relationship was carried out at the DFT level of theory using B3LYP functional complemented by 6-311++G(d,p) basis set. To better understand the role of hydrogen bonding, two different models (EZT + L-proline and EZT + 2L-proline) of EZT-L-proline cocrystal were studied. Spectral techniques (FTIR and FT-Raman) combined with quantum chemical methodologies were successfully implemented for the detailed vibrational assignment of fundamental modes. It is a zwitterionic cocrystal hydrogen bonded with the OH group of EZT and the COO- group of L-proline. The existence and strength of hydrogen bonds were examined by a natural bond orbital analysis (NBO) supported by the quantum theory of atoms in molecule (QTAIM). Chemical reactivity was reflected by the HOMO-LUMO analysis. A smaller energy gap in the cocrystal in comparison to API shows that a cocrystal is softer and chemically more reactive. MEPS and Fukui functions revealed the reactive sites of cocrystals. The calculated binding energy of the cocrystal from counterpoise method was -11.44 kcal/mol (EZT + L-proline) and -26.19 kcal/mol (EZT + 2L-proline). The comparative study between EZT-L-proline and EZT suggest that cocrystals can be better used as an alternative to comprehend the effect of hydrogen bonding in biomolecules and enhance the pharmacological properties of active pharmaceutical ingredients (APIs).

3.
Gene ; 808: 145989, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34624458

ABSTRACT

SERPINB5 is a mammary serine protease inhibitor, which is involved in various cellular functions. The aberrant expression of SERPINB5 is reported in many cancers along with GBC but limited information is available about its role in genetic predisposition for GBC. We carried out case-control study in 206 cases and 219 controls. Promoter SNPs were genotyped by Sanger's sequencing. In-silico promoter analysis and luciferase reporter assay were done to elucidate the role of promoter variants in regulation of SERPINB5 expression. Out of four SNPs, three SERPINB5 promoter variants showed association with GBC in different models. The 'C' allele of variant rs17071138 was found to be significantly associated with GBC (p = 0.017). The 'T' allele of rs3744940 significantly increased the risk for GBC in dominant (p = 0.035) and additive models (p = 0.005). Also, rs3744941 'T' allele increased the risk for GBC by dominant (p = 0.042) as well as additive models (p = 0.016). In-silico promoter analysis and luciferase reporter assay revealed the probable regulatory role of the SERPINB5 promoter variant rs17071138 on the expression. Overall, our study reveals the genetic association of SERPINB5 promoter variants with GBC and possible role of rs17071138 in the regulation of expression.


Subject(s)
Gallbladder Neoplasms/genetics , Gene Expression Regulation/genetics , Serpins/genetics , Adult , Alleles , Case-Control Studies , Female , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/physiopathology , Gene Expression/genetics , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Humans , India , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics , Serpins/physiology
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120219, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34332239

ABSTRACT

Estradiol 17ß valerate (E2V) is a hormonal medicine widely used in hormone replacement therapy. E2V undergoes a reversible isosymmetric structural phase transition at low temperature (Ì´ 250 K) which results from the reorientation of the valerate chain. The reversible isosymmetric structural phase transition follows Ehrenfest's classification when described as first-order and Buerger's classification when classified as order-disorder. The conformational difference also induces changes in molecular torsional angles and on the hydrogen bond pattern. In combination with density functional theory (DFT) calculations, vibrational spectroscopy has been used to correlate the valerate chain modes with the modifications of the dihedral angles on phase transition. We are expecting improvement in our understanding of the phase transition mechanism driven by the temperature. The Conformational analysis reveals the feasible structures corresponding to changes in the dihedral angles associated with the valerate chain. The infrared spectra of calculated conformers are in good agreement with the experimental spectra of E2V structure recorded at room temperature revealing that the changes in valerate chain modes at 1115 cm-1, 1200 cm-1and 1415 cm-1 fingerprint the molecular conformation. An investigation made to determine the ligand-protein interaction of E2V through docking against estrogen receptor (ER) reveals the inhibitive and agonist nature of E2V.


Subject(s)
Estradiol , Vibration , Molecular Conformation , Spectrum Analysis, Raman , Temperature , Valerates
5.
Article in English | MEDLINE | ID: mdl-30865873

ABSTRACT

The purpose of this article is to predict the molecular structure of the cocrystal of dipfluzine-benzoic acid (DIP-BEN) through computational approach (DFT calculations) and validate it using vibrational spectroscopic studies. The molecular structure of the DIP-BEN cocrystal has been predicted by forming models on the basis of the active sites available to form H-bonds between dipfluzine (DIP) and benzoic acid (BEN). Conformational study has been performed and potential energy surface scans are plotted around the flexible bonds of the cocrystal molecule and three stable conformers have been obtained. Quantum theory of atoms in molecules (QTAIM) explains that all the interactions are medium and partially covalent in nature. Natural bond orbital analysis of the second order perturbation theory of the Fock matrix suggests that interactions LP (2) O2 → σ*(O74H75) and LP (2) F1 → σ* (O89H90) are responsible for the stabilization of the molecule. The HOMO and LUMO energies and electronic charge transfer (ECT) confirms that charge flows from BEN to DIP. Global reactivity descriptor parameters suggest that DIP-BEN cocrystal is softer, thus more reactive in comparison to DIP. Local reactivity descriptor parameter is used to predict reactive sites of the cocrystal. The experimental and theoretical results support the formation of cocrystal through strong hydrogen bond (O89H90⋯F1 and O74H75⋯O2) interactions present in cocrystal.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 246-253, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30121023

ABSTRACT

Molecular structure, chemical and physical reactivity, spectroscopic behavior, intermolecular interactions play an important role in understanding the biological nature of pharmaceutical drugs. The objective of the study is to combine the spectroscopic and computational methodology for the investigation of structural behavior of ezetimibe (EZT). Computational study was done on monomeric, dimeric and trimeric models of EZT using B3LYP/6-311G(d,p). Hydrogen bond interactions were taken into consideration to validate the theoretical results with the experimental one. Results obtained for trimeric model were better than monomer and dimer. HOMO-LUMO energy band gap shows that the chemical reactivity calculated using dimeric and trimeric model is higher than that of monomeric model. Higher value of electrophilicity index (ω = 2.5654 eV) also confirms that trimer behaves as a strong electrophile in comparison with monomer and dimer. To examine the hyperconjugation interactions and the stability of the molecule, natural bond analysis (NBO) was done on dimer and trimer of EZT. Nature and the strength of hydrogen bonds were examined by quantum theory of atoms in molecules (QTAIM). Binding energy calculated from counterpoise method was -7.40 kcal/mol for dimer and -21.47 kcal/mol for trimer.


Subject(s)
Ezetimibe/chemistry , Hydrogen Bonding , Models, Molecular , Spectrum Analysis , Static Electricity
7.
Article in English | MEDLINE | ID: mdl-29852375

ABSTRACT

Febuxostat (FXT) is a urate-lowering drug and xanthine oxidase inhibitor which is used for the treatment of hyperuricemia and gout caused by increased levels of uric acid in the blood (hyperuricemia). The present study aims to provide deeper knowledge of the structural, vibrational spectroscopic and physiochemical properties of FXT based on monomeric and dimeric model with the aid of combination of experimental and computational methods. The conformational analysis of form Q has been done to predict the possible structure of unknown form A. Vibrational spectra of form A and Q has been compared to get an idea of hydrogen bonding interactions of form A. A computational study of FXT has been executed at different level (B3LYP, M06-2X, WB97XD) of theory and 6-31 G (d, p) basis set for dimeric model to elucidate the nature of intermolecular hydrogen bond. The red shift observed in the stretching modes of OH, CO groups and blue shift in stretching mode of CN group in experimental as well as in theoretical spectra explains the involvement of these groups in intermolecular hydrogen bonding. NBO analysis shows that change in electron density (ED) in the lone pair orbital to σ* antibonding orbital (LP1 (N39) → σ* (O3-H38)) with maximum value of E(2) energy confirms the presence of hydrogen bond (N39⋯H38-O3) leading to dimer formation. Study of topological parameters was executed for dimer using Bader's atoms in molecules (AIM) theory predicting the partially covalent nature of hydrogen bonds present in the molecule. The study of molecular electrostatic potential surface (MEPS) map ascertains that the CO, CN group are prone to electrophilic attack and OH group is active towards nucleophilic attack. The lower energy band gap and higher value of softness of dimeric model of FXT indicates its more reactivity, polarisability than monomeric model. The local reactivity descriptors predict the order of reactive sites towards electrophilic, nucleophilic and radical attack. An investigation made to determine the ligand protein interaction of FXT through docking with different molecular targets reveals the inhibitive as well as antibacterial nature of FXT.


Subject(s)
Dimerization , Febuxostat/chemistry , Models, Molecular , Spectrum Analysis , Hydrogen Bonding , Molecular Conformation , Molecular Docking Simulation , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Static Electricity , Thermodynamics , Vibration
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 132: 615-28, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-24892542

ABSTRACT

In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (µ) and the first hyperpolarizability (ß) that results in the nonlinearity of the molecule.


Subject(s)
Electrons , Isoflavones/chemistry , Models, Molecular , Molecular Conformation , Quantum Theory , Vibration , Anisotropy , Magnetic Resonance Spectroscopy , Methanol/chemistry , Nonlinear Dynamics , Optical Phenomena , Solvents , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Static Electricity , Thermodynamics
9.
Mol Cell Biochem ; 365(1-2): 323-32, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22382637

ABSTRACT

Lamins are the major structural components of the nucleus and mutations in the human lamin A gene cause a number of genetic diseases collectively termed laminopathies. At the cellular level, lamin A mutations cause aberrant nuclear morphology and defects in nuclear functions such as the response to DNA damage. We have investigated the mechanism of depletion of a key damage sensor, ATR (Ataxia-telangiectasia-mutated-and-Rad3-related) kinase, in HeLa cells expressing lamin A mutants or lamin A shRNA. The degradation of ATR kinase in these cells was through the proteasomal pathway as it was reversed by the proteasomal inhibitor MG132. Expression of lamin A mutants or shRNA led to transcriptional activation of three ubiquitin ligase components, namely, RNF123 (ring finger protein 123), HECW2 (HECT domain ligase W2) and the F-box protein FBXW10. Ectopic expression of RNF123, HECW2 or FBXW10 directly resulted in proteasomal degradation of ATR kinase and the ring domain of RNF123 was required for this degradation. However, these ligases did not alter the stability of DNA-dependent protein kinase, which is not depleted upon lamin misexpression. Although degradation of ATR kinase was reversed by MG132, it was not affected by the nuclear export inhibitor, leptomycin B, suggesting that ATR kinase is degraded within the nucleus. Our findings indicate that lamin misexpression can lead to deleterious effects on the stability of the key DNA damage sensor, ATR kinase by upregulation of specific components of the ubiquitination pathway.


Subject(s)
Cell Cycle Proteins/metabolism , Gene Expression , Lamin Type A/genetics , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Up-Regulation , Ataxia Telangiectasia Mutated Proteins , Cell Nucleus/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Lamin Type A/metabolism , Leupeptins/pharmacology , Microscopy, Fluorescence , Mutagenesis, Site-Directed , Mutation, Missense , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , Protein Denaturation , RNA Interference , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...