Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Addict Med ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776423

ABSTRACT

OBJECTIVE: A trial comparing extended-release naltrexone and sublingual buprenorphine-naloxone demonstrated higher relapse rates in individuals randomized to extended-release naltrexone. The effectiveness of treatment might vary based on patient characteristics. We hypothesized that causal machine learning would identify individualized treatment effects for each medication. METHODS: This is a secondary analysis of a multicenter randomized trial that compared the effectiveness of extended-release naltrexone versus buprenorphine-naloxone for preventing relapse of opioid misuse. Three machine learning models were derived using all trial participants with 50% randomly selected for training (n = 285) and the remaining 50% for validation. Individualized treatment effect was measured by the Qini value and c-for-benefit, with the absence of relapse denoting treatment success. Patients were grouped into quartiles by predicted individualized treatment effect to examine differences in characteristics and the observed treatment effects. RESULTS: The best-performing model had a Qini value of 4.45 (95% confidence interval, 1.02-7.83) and a c-for-benefit of 0.63 (95% confidence interval, 0.53-0.68). The quartile most likely to benefit from buprenorphine-naloxone had a 35% absolute benefit from this treatment, and at study entry, they had a high median opioid withdrawal score (P < 0.001), used cocaine on more days over the prior 30 days than other quartiles (P < 0.001), and had highest proportions with alcohol and cocaine use disorder (P ≤ 0.02). Quartile 4 individuals were predicted to be most likely to benefit from extended-release naltrexone, with the greatest proportion having heroin drug preference (P = 0.02) and all experiencing homelessness (P < 0.001). CONCLUSIONS: Causal machine learning identified differing individualized treatment effects between medications based on characteristics associated with preventing relapse.

2.
Crit Care ; 28(1): 164, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745253

ABSTRACT

BACKGROUND: Hypoinflammatory and hyperinflammatory phenotypes have been identified in both Acute Respiratory Distress Syndrome (ARDS) and sepsis. Attributable mortality of ARDS in each phenotype of sepsis is yet to be determined. We aimed to estimate the population attributable fraction of death from ARDS (PAFARDS) in hypoinflammatory and hyperinflammatory sepsis, and to determine the primary cause of death within each phenotype. METHODS: We studied 1737 patients with sepsis from two prospective cohorts. Patients were previously assigned to the hyperinflammatory or hypoinflammatory phenotype using latent class analysis. The PAFARDS in patients with sepsis was estimated separately in the hypo and hyperinflammatory phenotypes. Organ dysfunction, severe comorbidities, and withdrawal of life support were abstracted from the medical record in a subset of patients from the EARLI cohort who died (n = 130/179). Primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support. RESULTS: The PAFARDS was 19% (95%CI 10,28%) in hypoinflammatory sepsis and, 14% (95%CI 6,20%) in hyperinflammatory sepsis. Cause of death differed between the two phenotypes (p < 0.001). Respiratory failure was the most common cause of death in hypoinflammatory sepsis, whereas circulatory shock was the most common cause in hyperinflammatory sepsis. Death with severe underlying comorbidities was more frequent in hypoinflammatory sepsis (81% vs. 67%, p = 0.004). CONCLUSIONS: The PAFARDS is modest in both phenotypes whereas primary cause of death among patients with sepsis differed substantially by phenotype. This study identifies challenges in powering future clinical trials to detect changes in mortality outcomes among patients with sepsis and ARDS.


Subject(s)
Phenotype , Respiratory Distress Syndrome , Sepsis , Humans , Sepsis/mortality , Sepsis/complications , Sepsis/physiopathology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Aged , Prospective Studies , Cause of Death/trends , Cohort Studies , Inflammation
3.
Crit Care ; 28(1): 132, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649920

ABSTRACT

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Subject(s)
Biomarkers , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Prospective Studies , Aged , Biomarkers/blood , Biomarkers/analysis , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Adult , Cohort Studies , Hypoxia/blood
4.
JAMA ; 331(14): 1195-1204, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38501205

ABSTRACT

Importance: Among critically ill adults, randomized trials have not found oxygenation targets to affect outcomes overall. Whether the effects of oxygenation targets differ based on an individual's characteristics is unknown. Objective: To determine whether an individual's characteristics modify the effect of lower vs higher peripheral oxygenation-saturation (Spo2) targets on mortality. Design, Setting, and Participants: A machine learning model to predict the effect of treatment with a lower vs higher Spo2 target on mortality for individual patients was derived in the Pragmatic Investigation of Optimal Oxygen Targets (PILOT) trial and externally validated in the Intensive Care Unit Randomized Trial Comparing Two Approaches to Oxygen Therapy (ICU-ROX) trial. Critically ill adults received invasive mechanical ventilation in an intensive care unit (ICU) in the United States between July 2018 and August 2021 for PILOT (n = 1682) and in 21 ICUs in Australia and New Zealand between September 2015 and May 2018 for ICU-ROX (n = 965). Exposures: Randomization to a lower vs higher Spo2 target group. Main Outcome and Measure: 28-Day mortality. Results: In the ICU-ROX validation cohort, the predicted effect of treatment with a lower vs higher Spo2 target for individual patients ranged from a 27.2% absolute reduction to a 34.4% absolute increase in 28-day mortality. For example, patients predicted to benefit from a lower Spo2 target had a higher prevalence of acute brain injury, whereas patients predicted to benefit from a higher Spo2 target had a higher prevalence of sepsis and abnormally elevated vital signs. Patients predicted to benefit from a lower Spo2 target experienced lower mortality when randomized to the lower Spo2 group, whereas patients predicted to benefit from a higher Spo2 target experienced lower mortality when randomized to the higher Spo2 group (likelihood ratio test for effect modification P = .02). The use of a Spo2 target predicted to be best for each patient, instead of the randomized Spo2 target, would have reduced the absolute overall mortality by 6.4% (95% CI, 1.9%-10.9%). Conclusion and relevance: Oxygenation targets that are individualized using machine learning analyses of randomized trials may reduce mortality for critically ill adults. A prospective trial evaluating the use of individualized oxygenation targets is needed.


Subject(s)
Critical Illness , Oxygen , Adult , Humans , Oxygen/therapeutic use , Critical Illness/therapy , Respiration, Artificial , Prospective Studies , Oxygen Inhalation Therapy , Intensive Care Units
5.
Am J Respir Crit Care Med ; 209(7): 816-828, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38345571

ABSTRACT

Rationale: Two molecular phenotypes have been identified in acute respiratory distress syndrome (ARDS). In the ROSE (Reevaluation of Systemic Early Neuromuscular Blockade) trial of cisatracurium in moderate to severe ARDS, we addressed three unanswered questions: 1) Do the same phenotypes emerge in a more severe ARDS cohort with earlier recruitment; 2) Do phenotypes respond differently to neuromuscular blockade? and 3) What biological pathways most differentiate inflammatory phenotypes?Methods: We performed latent class analysis in ROSE using preenrollment clinical and protein biomarkers. In a subset of patients (n = 134), we sequenced whole-blood RNA using enrollment and Day 2 samples and performed differential gene expression and pathway analyses. Informed by the differential gene expression analysis, we measured additional plasma proteins and evaluated their abundance relative to gene expression amounts.Measurements and Main Results: In ROSE, we identified the hypoinflammatory (60.4%) and hyperinflammatory (39.6%) phenotypes with similar biological and clinical characteristics as prior studies, including higher mortality at Day 90 for the hyperinflammatory phenotype (30.3% vs. 61.6%; P < 0.0001). We observed no treatment interaction between the phenotypes and randomized groups for mortality. The hyperinflammatory phenotype was enriched for genes associated with innate immune response, tissue remodeling, and zinc metabolism at Day 0 and collagen synthesis and neutrophil degranulation at Day 2. Longitudinal changes in gene expression patterns differed dependent on survivorship. For most highly expressed genes, we observed correlations with their corresponding plasma proteins' abundance. However, for the class-defining plasma proteins in the latent class analysis, no correlation was observed with their corresponding genes' expression.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have different clinical, protein, and dynamic transcriptional characteristics. These findings support the clinical and biological potential of molecular phenotypes to advance precision care in ARDS.


Subject(s)
Respiratory Distress Syndrome , Humans , Phenotype , Biomarkers , Blood Proteins/genetics , Gene Expression
6.
Am J Respir Crit Care Med ; 209(7): 805-815, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38190719

ABSTRACT

Rationale: Two molecular phenotypes of sepsis and acute respiratory distress syndrome, termed hyperinflammatory and hypoinflammatory, have been consistently identified by latent class analysis in numerous cohorts, with widely divergent clinical outcomes and differential responses to some treatments; however, the key biological differences between these phenotypes remain poorly understood.Objectives: We used host and microbe metagenomic sequencing data from blood to deepen our understanding of biological differences between latent class analysis-derived phenotypes and to assess concordance between the latent class analysis-derived phenotypes and phenotypes reported by other investigative groups (e.g., Sepsis Response Signature [SRS1-2], molecular diagnosis and risk stratification of sepsis [MARS1-4], reactive and uninflamed).Methods: We analyzed data from 113 patients with hypoinflammatory sepsis and 76 patients with hyperinflammatory sepsis enrolled in a two-hospital prospective cohort study. Molecular phenotypes had been previously assigned using latent class analysis.Measurements and Main Results: The hyperinflammatory and hypoinflammatory phenotypes of sepsis had distinct gene expression signatures, with 5,755 genes (31%) differentially expressed. The hyperinflammatory phenotype was associated with elevated expression of innate immune response genes, whereas the hypoinflammatory phenotype was associated with elevated expression of adaptive immune response genes and, notably, T cell response genes. Plasma metagenomic analysis identified differences in prevalence of bacteremia, bacterial DNA abundance, and composition between the phenotypes, with an increased presence and abundance of Enterobacteriaceae in the hyperinflammatory phenotype. Significant overlap was observed between these phenotypes and previously identified transcriptional subtypes of acute respiratory distress syndrome (reactive and uninflamed) and sepsis (SRS1-2). Analysis of data from the VANISH trial indicated that corticosteroids might have a detrimental effect in patients with the hypoinflammatory phenotype.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have distinct transcriptional and metagenomic features that could be leveraged for precision treatment strategies.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Humans , Prospective Studies , Critical Illness , Phenotype , Sepsis/genetics , Sepsis/complications , Respiratory Distress Syndrome/complications
7.
Alzheimers Dement ; 20(1): 183-194, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37522255

ABSTRACT

BACKGROUND: Delirium, a common syndrome with heterogeneous etiologies and clinical presentations, is associated with poor long-term outcomes. Recording and analyzing all delirium equally could be hindering the field's understanding of pathophysiology and identification of targeted treatments. Current delirium subtyping methods reflect clinically evident features but likely do not account for underlying biology. METHODS: The Delirium Subtyping Initiative (DSI) held three sessions with an international panel of 25 experts. RESULTS: Meeting participants suggest further characterization of delirium features to complement the existing Diagnostic and Statistical Manual of Mental Disorders Fifth Edition Text Revision diagnostic criteria. These should span the range of delirium-spectrum syndromes and be measured consistently across studies. Clinical features should be recorded in conjunction with biospecimen collection, where feasible, in a standardized way, to determine temporal associations of biology coincident with clinical fluctuations. DISCUSSION: The DSI made recommendations spanning the breadth of delirium research including clinical features, study planning, data collection, and data analysis for characterization of candidate delirium subtypes. HIGHLIGHTS: Delirium features must be clearly defined, standardized, and operationalized. Large datasets incorporating both clinical and biomarker variables should be analyzed together. Delirium screening should incorporate communication and reasoning.


Subject(s)
Delirium , Humans , Delirium/diagnosis , Delirium/etiology , Research Design , Data Collection , Diagnostic and Statistical Manual of Mental Disorders
8.
Thorax ; 79(2): 128-134, 2024 01 18.
Article in English | MEDLINE | ID: mdl-37813544

ABSTRACT

BACKGROUND: Two subphenotypes of acute respiratory distress syndrome (ARDS), hypoinflammatory and hyperinflammatory, have been reported in adults and in a single paediatric cohort. The relevance of these subphenotypes in paediatrics requires further investigation. We aimed to identify subphenotypes in two large observational cohorts of paediatric ARDS and assess their congruence with prior descriptions. METHODS: We performed latent class analysis (LCA) separately on two cohorts using biomarkers as inputs. Subphenotypes were compared on clinical characteristics and outcomes. Finally, we assessed overlap with adult cohorts using parsimonious classifiers. FINDINGS: In two cohorts from the Children's Hospital of Philadelphia (n=333) and from a multicentre study based at the University of California San Francisco (n=293), LCA identified two subphenotypes defined by differential elevation of biomarkers reflecting inflammation and endotheliopathy. In both cohorts, hyperinflammatory subjects had greater illness severity, more sepsis and higher mortality (41% and 28% in hyperinflammatory vs 11% and 7% in hypoinflammatory). Both cohorts demonstrated overlap with adult subphenotypes when assessed using parsimonious classifiers. INTERPRETATION: We identified hypoinflammatory and hyperinflammatory subphenotypes of paediatric ARDS from two separate cohorts with utility for prognostic and potentially predictive, enrichment. Future paediatric ARDS trials should identify and leverage biomarker-defined subphenotypes in their analysis.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Child , Humans , Biomarkers , Phenotype , Prognosis , Respiratory Distress Syndrome/diagnosis , Cohort Studies
9.
Crit Care Med ; 51(12): e269-e274, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37695136

ABSTRACT

OBJECTIVES: Interleukin-18 (IL-18) plasma level and latent class analysis (LCA) have separately been shown to predict prognosis and treatment response in acute respiratory distress syndrome (ARDS). IL-18 is a measure of inflammasome activation, a pathway potentially distinct from inflammation captured by biomarkers defining previously published LCA classes. We hypothesized that elevated IL-18 would identify distinct "high-risk" patients not captured by prior LCA classifications. DESIGN: Statins for acutely injured lungs from sepsis (SAILS) and hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction trial (HARP-2) are two large randomized, controlled trials in ARDS in which both LCA assignments and IL-18 levels were shown to predict mortality. We first evaluated the overlap between high IL-18 levels (≥ 800 pg/mL) with prior LCA class assignments using McNemar's test and then tested the correlation between IL-18 and LCA biomarkers using Pearson's exact test on log-2 transformed values. Our primary analysis was the association of IL-18 level with 60-day mortality in the hypoinflammatory LCA class, which was assessed using the Fisher exact test and Cox proportional hazards modeling adjusting for age, Acute Physiology and Chronic Health Evaluation score, and gender. Secondary analyses included the association of IL-18 and LCA with mortality within each IL-18/LCA subgroup. SETTING: Secondary analysis of two multicenter, randomized controlled clinical trials of ARDS patients. SUBJECTS: Six hundred eighty-three patients in SAILS and 511 patients in HARP-2. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We found that 33% of patients in SAILS and HARP-2 were discordant by IL-18 level and LCA class. We further found that IL-18 level was only modestly correlated (0.17-0.47) with cytokines used in the LCA assignment. A substantial subset of individuals classified as hypoinflammatory by LCA (14% of SAILS and 43% of HARP-2) were classified as high risk by elevated IL-18. These individuals were at high risk for mortality in both SAILS (42% 60-d mortality, odds ratio [OR] 3.3; 95% CI, 1.8-6.1; p < 0.001) and HARP-2 (27% 60-d mortality, OR 2.1; 95% CI, 1.2-3.8; p = 0.009). CONCLUSIONS: Plasma IL-18 level provides important additional prognostic information to LCA subphenotypes defined largely by traditional inflammatory biomarkers in two large ARDS cohorts.


Subject(s)
Interleukin-18 , Respiratory Distress Syndrome , Humans , Latent Class Analysis , Retrospective Studies , Cytokines , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/therapy , Biomarkers , Interleukin-8
10.
Crit Care Clin ; 39(4): 627-646, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704331

ABSTRACT

Precision medicine aims to identify treatments that are most likely to result in favorable outcomes for subgroups of patients with similar clinical and biological characteristics. The gaps for the development and implementation of precision medicine strategies in the critical care setting are many, but the advent of data science and multi-omics approaches, combined with the rich data ecosystem in the intensive care unit, offer unprecedented opportunities to realize the promise of precision critical care. In this article, the authors review the data-driven and technology-based approaches being leveraged to discover and implement precision medicine strategies in the critical care setting.


Subject(s)
Data Science , Precision Medicine , Humans , Ecosystem , Critical Care , Technology
11.
Lancet Respir Med ; 11(11): 965-974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37633303

ABSTRACT

BACKGROUND: In sepsis and acute respiratory distress syndrome (ARDS), heterogeneity has contributed to difficulty identifying effective pharmacotherapies. In ARDS, two molecular phenotypes (hypoinflammatory and hyperinflammatory) have consistently been identified, with divergent outcomes and treatment responses. In this study, we sought to derive molecular phenotypes in critically ill adults with sepsis, determine their overlap with previous ARDS phenotypes, and evaluate whether they respond differently to treatment in completed sepsis trials. METHODS: We used clinical data and plasma biomarkers from two prospective sepsis cohorts, the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study (N=1140) and the Early Assessment of Renal and Lung Injury (EARLI) study (N=818), in latent class analysis (LCA) to identify the optimal number of classes in each cohort independently. We used validated models trained to classify ARDS phenotypes to evaluate concordance of sepsis and ARDS phenotypes. We applied these models retrospectively to the previously published Prospective Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis and Septic Shock (PROWESS-SHOCK) trial and Vasopressin and Septic Shock Trial (VASST) to assign phenotypes and evaluate heterogeneity of treatment effect. FINDINGS: A two-class model best fit both VALID and EARLI (p<0·0001). In VALID, 804 (70·5%) of the 1140 patients were classified as hypoinflammatory and 336 (29·5%) as hyperinflammatory; in EARLI, 530 (64·8%) of 818 were hypoinflammatory and 288 (35·2%) hyperinflammatory. We observed higher plasma pro-inflammatory cytokines, more vasopressor use, more bacteraemia, lower protein C, and higher mortality in the hyperinflammatory than in the hypoinflammatory phenotype (p<0·0001 for all). Classifier models indicated strong concordance between sepsis phenotypes and previously identified ARDS phenotypes (area under the curve 0·87-0·96, depending on the model). Findings were similar excluding participants with both sepsis and ARDS. In PROWESS-SHOCK, 1142 (68·0%) of 1680 patients had the hypoinflammatory phenotype and 538 (32·0%) had the hyperinflammatory phenotype, and response to activated protein C differed by phenotype (p=0·0043). In VASST, phenotype proportions were similar to other cohorts; however, no treatment interaction with the type of vasopressor was observed (p=0·72). INTERPRETATION: Molecular phenotypes previously identified in ARDS are also identifiable in multiple sepsis cohorts and respond differently to activated protein C. Molecular phenotypes could represent a treatable trait in critical illness beyond the patient's syndromic diagnosis. FUNDING: US National Institutes of Health.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Shock, Septic , Adult , Humans , Shock, Septic/diagnosis , Shock, Septic/drug therapy , Protein C/therapeutic use , Retrospective Studies , Prospective Studies , Sepsis/diagnosis , Sepsis/drug therapy , Sepsis/complications , Phenotype , Biomarkers , Vasoconstrictor Agents/therapeutic use , Randomized Controlled Trials as Topic
13.
Thorax ; 78(10): 990-1003, 2023 10.
Article in English | MEDLINE | ID: mdl-37495364

ABSTRACT

BACKGROUND: Efficiency of randomised clinical trials of acute respiratory distress syndrome (ARDS) depends on the fraction of deaths attributable to ARDS (AFARDS) to which interventions are targeted. Estimates of AFARDS in subpopulations of ARDS could improve design of ARDS trials. METHODS: We performed a matched case-control study using the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE cohort. Primary outcome was intensive care unit mortality. We used nearest neighbour propensity score matching without replacement to match ARDS to non-ARDS populations. We derived two separate AFARDS estimates by matching patients with ARDS to patients with non-acute hypoxaemic respiratory failure (non-AHRF) and to patients with AHRF with unilateral infiltrates only (AHRF-UL). We also estimated AFARDS in subgroups based on severity of hypoxaemia, number of lung quadrants involved and hyperinflammatory versus hypoinflammatory phenotypes. Additionally, we derived AFAHRF estimates by matching patients with AHRF to non-AHRF controls, and AFAHRF-UL estimates by matching patients with AHRF-UL to non-AHRF controls. RESULTS: Estimated AFARDS was 20.9% (95% CI 10.5% to 31.4%) when compared with AHRF-UL controls and 38.0% (95% CI 34.4% to 41.6%) compared with non-AHRF controls. Within subgroups, estimates for AFARDS compared with AHRF-UL controls were highest in patients with severe hypoxaemia (41.1% (95% CI 25.2% to 57.1%)), in those with four quadrant involvement on chest radiography (28.9% (95% CI 13.4% to 44.3%)) and in the hyperinflammatory subphenotype (26.8% (95% CI 6.9% to 46.7%)). Estimated AFAHRF was 33.8% (95% CI 30.5% to 37.1%) compared with non-AHRF controls. Estimated AFAHRF-UL was 21.3% (95% CI 312.8% to 29.7%) compared with non-AHRF controls. CONCLUSIONS: Overall AFARDS mean values were between 20.9% and 38.0%, with higher AFARDS seen with severe hypoxaemia, four quadrant involvement on chest radiography and hyperinflammatory ARDS.


Subject(s)
Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Case-Control Studies , Respiratory Distress Syndrome/drug therapy , Lung , Hypoxia
14.
Crit Care Med ; 51(12): 1697-1705, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37378460

ABSTRACT

OBJECTIVES: To identify and validate novel COVID-19 subphenotypes with potential heterogenous treatment effects (HTEs) using electronic health record (EHR) data and 33 unique biomarkers. DESIGN: Retrospective cohort study of adults presenting for acute care, with analysis of biomarkers from residual blood collected during routine clinical care. Latent profile analysis (LPA) of biomarker and EHR data identified subphenotypes of COVID-19 inpatients, which were validated using a separate cohort of patients. HTE for glucocorticoid use among subphenotypes was evaluated using both an adjusted logistic regression model and propensity matching analysis for in-hospital mortality. SETTING: Emergency departments from four medical centers. PATIENTS: Patients diagnosed with COVID-19 based on International Classification of Diseases , 10th Revision codes and laboratory test results. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Biomarker levels generally paralleled illness severity, with higher levels among more severely ill patients. LPA of 522 COVID-19 inpatients from three sites identified two profiles: profile 1 ( n = 332), with higher levels of albumin and bicarbonate, and profile 2 ( n = 190), with higher inflammatory markers. Profile 2 patients had higher median length of stay (7.4 vs 4.1 d; p < 0.001) and in-hospital mortality compared with profile 1 patients (25.8% vs 4.8%; p < 0.001). These were validated in a separate, single-site cohort ( n = 192), which demonstrated similar outcome differences. HTE was observed ( p = 0.03), with glucocorticoid treatment associated with increased mortality for profile 1 patients (odds ratio = 4.54). CONCLUSIONS: In this multicenter study combining EHR data with research biomarker analysis of patients with COVID-19, we identified novel profiles with divergent clinical outcomes and differential treatment responses.


Subject(s)
COVID-19 , Adult , Humans , Retrospective Studies , Glucocorticoids/therapeutic use , Biomarkers , Hospital Mortality
16.
Crit Care ; 27(1): 234, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312169

ABSTRACT

Angiopoietin-2 (Ang-2) is associated with vascular endothelial injury and permeability in the acute respiratory distress syndrome (ARDS) and sepsis. Elevated circulating Ang-2 levels may identify critically ill patients with distinct pathobiology amenable to targeted therapy. We hypothesized that plasma Ang-2 measured shortly after hospitalization among patients with sepsis would be associated with the development of ARDS and poor clinical outcomes. To test this hypothesis, we measured plasma Ang-2 in a cohort of 757 patients with sepsis, including 267 with ARDS, enrolled in the emergency department or early in their ICU course before the COVID-19 pandemic. Multivariable models were used to test the association of Ang-2 with the development of ARDS and 30-day morality. We found that early plasma Ang-2 in sepsis was associated with higher baseline severity of illness, the development of ARDS, and mortality risk. The association between Ang-2 and mortality was strongest among patients with ARDS and sepsis as compared to those with sepsis alone (OR 1.81 vs. 1.52 per log Ang-2 increase). These findings might inform models testing patient risk prediction and strengthen the evidence for Ang-2 as an appealing biomarker for patient selection for novel therapeutic agents to target vascular injury in sepsis and ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , Angiopoietin-2 , Critical Illness , Pandemics , Prognosis
17.
Am J Respir Crit Care Med ; 207(12): 1602-1611, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36877594

ABSTRACT

Rationale: A recent randomized trial found that using a bougie did not increase the incidence of successful intubation on first attempt in critically ill adults. The average effect of treatment in a trial population, however, may differ from effects for individuals. Objective: We hypothesized that application of a machine learning model to data from a clinical trial could estimate the effect of treatment (bougie vs. stylet) for individual patients based on their baseline characteristics ("individualized treatment effects"). Methods: This was a secondary analysis of the BOUGIE (Bougie or Stylet in Patients Undergoing Intubation Emergently) trial. A causal forest algorithm was used to model differences in outcome probabilities by randomized group assignment (bougie vs. stylet) for each patient in the first half of the trial (training cohort). This model was used to predict individualized treatment effects for each patient in the second half (validation cohort). Measurements and Main Results: Of 1,102 patients in the BOUGIE trial, 558 (50.6%) were the training cohort, and 544 (49.4%) were the validation cohort. In the validation cohort, individualized treatment effects predicted by the model significantly modified the effect of trial group assignment on the primary outcome (P value for interaction = 0.02; adjusted qini coefficient, 2.46). The most important model variables were difficult airway characteristics, body mass index, and Acute Physiology and Chronic Health Evaluation II score. Conclusions: In this hypothesis-generating secondary analysis of a randomized trial with no average treatment effect and no treatment effect in any prespecified subgroups, a causal forest machine learning algorithm identified patients who appeared to benefit from the use of a bougie over a stylet and from the use of a stylet over a bougie using complex interactions between baseline patient and operator characteristics.


Subject(s)
Critical Illness , Intubation, Intratracheal , Adult , Humans , Critical Illness/therapy , Intubation, Intratracheal/adverse effects , Calibration , Laryngoscopy
19.
Nat Biomed Eng ; 7(12): 1556-1570, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36732621

ABSTRACT

Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.


Subject(s)
Immunoconjugates , Nanoparticles , Humans , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay , Antibodies , Point-of-Care Testing
20.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L297-L306, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36648136

ABSTRACT

Using latent class analysis (LCA) of clinical and protein biomarkers, researchers have identified two phenotypes of the acute respiratory distress syndrome (ARDS) with divergent clinical trajectories and treatment responses. We investigated whether plasma metabolites differed among patients with LCA-derived hyperinflammatory and hypoinflammatory ARDS, and we tested the prognostic utility of adding metabolic clusters to LCA phenotypes. We analyzed data from 93 patients with ARDS and sepsis enrolled in a multicenter prospective cohort of critically ill patients, comparing 970 metabolites between the two LCA-derived phenotypes. In all, 188 metabolites were differentially abundant between the two LCA-derived phenotypes. After adjusting for age, sex, confounding medications, and comorbid liver and kidney disease, 82 metabolites remained significantly different. Patients with hyperinflammatory ARDS had reduced circulating lipids but high levels of pyruvate, lactate, and malate. Metabolic cluster and LCA-derived phenotypes were each significantly and independently associated with survival. Patients with hyperinflammatory ARDS may be experiencing a glycolytic shift leading to dysregulated lipid metabolism. Metabolic profiling offers prognostic information beyond what is captured by LCA phenotypes alone. Deeper biological profiling may identify key differences in pathogenesis among patients with ARDS and may lead to novel targeted therapies.


Subject(s)
Lipid Metabolism , Respiratory Distress Syndrome , Humans , Prospective Studies , Biomarkers , Phenotype , Respiratory Distress Syndrome/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...