Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7781, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36526625

ABSTRACT

Moiré superlattices engineer band properties and enable observation of fractal energy spectra of Hofstadter butterfly. Recently, correlated-electron physics hosted by flat bands in small-angle moiré systems has been at the foreground. However, the implications of moiré band topology within the single-particle framework are little explored experimentally. An outstanding problem is understanding the effect of band topology on Hofstadter physics, which does not require electron correlations. Our work experimentally studies Chern state switching in the Hofstadter regime using twisted double bilayer graphene (TDBG), which offers electric field tunable topological bands, unlike twisted bilayer graphene. Here we show that the nontrivial topology reflects in the Hofstadter spectra, in particular, by displaying a cascade of Hofstadter gaps that switch their Chern numbers sequentially while varying the perpendicular electric field. Our experiments together with theoretical calculations suggest a crucial role of charge polarization changing concomitantly with topological transitions in this system. Layer polarization is likely to play an important role in the topological states in few-layer twisted systems. Moreover, our work establishes TDBG as a novel Hofstadter platform with nontrivial magnetoelectric coupling.

2.
Nat Commun ; 11(1): 5548, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33144578

ABSTRACT

2D materials based superlattices have emerged as a promising platform to modulate band structure and its symmetries. In particular, moiré periodicity in twisted graphene systems produces flat Chern bands. The recent observation of anomalous Hall effect (AHE) and orbital magnetism in twisted bilayer graphene has been associated with spontaneous symmetry breaking of such Chern bands. However, the valley Hall state as a precursor of AHE state, when time-reversal symmetry is still protected, has not been observed. Our work probes this precursor state using the valley Hall effect. We show that broken inversion symmetry in twisted double bilayer graphene (TDBG) facilitates the generation of bulk valley current by reporting experimental evidence of nonlocal transport in a nearly flat band system. Despite the spread of Berry curvature hotspots and reduced quasiparticle velocities of the carriers in these flat bands, we observe large nonlocal voltage several micrometers away from the charge current path - this persists when the Fermi energy lies inside a gap with large Berry curvature. The high sensitivity of the nonlocal voltage to gate tunable carrier density and gap modulating perpendicular electric field makes TDBG an attractive platform for valley-twistronics based on flat bands.

3.
Nanotechnology ; 31(32): 32LT02, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32316001

ABSTRACT

We present a quick and reliable method to cut 2D materials for creating 2D twisted heterostructures and devices. We demonstrate the effectiveness of using a tapered fibre scalpel for cutting graphene. Electrical transport measurements show evidence of the desired twist between the graphene layers fabricated using our technique. Statistics of the number of successfully twisted stacks made using our method is compared with h-BN assisted tear-and-stack method. Also, our method can be used for twisted stack fabrication of materials that are few nanometers thick. Finally, we demonstrate the versatility of the tapered fibre scalpel for other shaping related applications for sensitive 2D materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...