Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 13(32): 13709-13718, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34477646

ABSTRACT

Graphene/ferromagnet hybrid heterostructures are important building blocks of spintronics due to the unique ability of graphene to transport spin current over unprecedented distances and possible increase in its spin-orbit coupling due to proximity and hybridization. Here, we present magnetization dynamics over a femtosecond to nanosecond timescale by employing an all-optical time-resolved magneto-optical Kerr effect technique in single-layer graphene (SLG)/CoFeB thin films with varying CoFeB thickness and compared them with reference CoFeB thin films without an SLG underlayer. Gilbert damping variation with CoFeB thickness is modelled to extract spin-mixing conductance for the SLG/CoFeB interface and isolate the two-magnon scattering contribution from spin pumping. In SLG/CoFeB, we have established an inverse relationship between ultrafast demagnetization time (τm) and the Gilbert damping parameter (α) induced by interfacial spin accumulation and pure spin-current transport via a spin pumping mechanism. This systematic study of ultrafast demagnetization in SLG/CoFeB heterostructures and its connection with magnetic damping can help to design graphene-based ultrahigh-speed spintronic devices.

2.
Langmuir ; 36(17): 4607-4618, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32282215

ABSTRACT

Studies of CuPc thin films on underlying ferroelectric copolymeric and terpolymeric substrates have been performed by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Work function (WF) and highest occupied molecular orbital (HOMO) energy level shift observed from UPS spectroscopy for successive deposition of CuPc molecules on ferroelectric polymer surfaces confirm the formation of interface dipole at the CuPc-ferroelectric polymer interface owing to charge transfer from the tailing region of the CuPc HOMO density of states (DOS) to the ferroelectric polymer layer. According to our thickness dependent XPS data, CuPc molecules are coupled to the organic ferroelectric surfaces through the central metal atom of the CuPc molecules, i.e., copper atom, and the halogens of underlying ferroelectric polymer surfaces, and hence support the charge transfer phenomenon from CuPc molecules to the ferroelectric polymer substrate. Polarization dependent NEXAFS results reveal that CuPc molecules retain their tilted geometrical configuration even at submonolayer thickness of the molecular films on both ferroelectric surfaces and confirms the electronic structural disturbance associated with structural modification of CuPc molecules due to interfacial charge transfer. Therefore, the energy level alignment with increment in the thickness of CuPc films at both the organic semiconductor-ferroelectric polymer interface is controlled by the charge transfer phenomenon from deposited CuPc molecules to the organic ferroelectric substrates. Our results provide a clear understanding about chemical interactions, molecular configurations, energy level alignment, and their correlation at CuPc/polymeric ferroelectric interfaces that can be important for organic nonvolatile memory and synaptic based thin-film transistor devices.

3.
Phys Chem Chem Phys ; 20(27): 18623-18629, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29953156

ABSTRACT

X-ray absorption spectra (XAS), the density of states (DOS) and the electron density distribution of the HOMO and LUMO for flat and twisted rubrene molecules have been calculated using density functional theory (DFT). The simulated XAS spectra are validated by experimental C K-edge near-edge X-ray absorption fine structure (NEXAFS) data. We demonstrate that the NEXAFS spectra of rubrene thin films of different thicknesses can be explained in terms of different combinations of spectral intensity from the twisted and the flat randomly oriented molecules. All the fine structure of the NEXAFS spectra is well reproduced and the energetic positions of the resonances agree within a window of ±0.3 eV with the calculated XAS. Our calculation reveals that the peak at lowest photon energy (α') of the NEXAFS spectra at the lower coverage of rubrene molecules appears only from the twisted molecules. Other peaks in the case of the flat molecules appear either from the backbone or the wings, whereas, for the twisted molecules, the backbone and the wings contribute somewhat equally. Lowering of the HOMO-LUMO gap, as well as redistribution of the electron density of both the frontier orbitals, is found to take place in the case of the twisted molecule. The redistribution explains the reduction in conductivity for the twisted molecule compared to the flat one despite the lower band gap for the former. This finding will further strengthen the progress of rubrene thin film based devices.

4.
Langmuir ; 30(51): 15433-41, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25383646

ABSTRACT

The performances of organic semiconductor devices are crucially linked with their stability at the ambient atmosphere. The evolution of electronic structures of 20 nm thick rubrene films exposed to ambient environment with time has been studied by UV and X-ray photoemission spectroscopy (UPS and XPS), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT). XPS, NEXAFS data, and DFT calculated values suggest the formation of rubrene-epoxide and rubrene-endoperoxide through reaction of tetracene backbone with oxygen of ambient environment. Angle dependent XPS measurement indicates that the entire probed depth of the films reacts with oxygen by spending only about 120 min in ambient environment. The HOMO peak of pristine rubrene films almost disappears by exposure of 120 min to ambient environment. The evolution of the valence band (occupied states) and NEXAFS (unoccupied states) spectra indicates that the films become more insulating with exposure as the HOMO-LUMO gap increases on oxidation. Oxygen induced chemical reaction completely destroys the delocalized nature of the electron distribution in the tetracene backbone of rubrene. The results are relevant to the performance and reliability of rubrene based devices in the environment.

5.
Langmuir ; 29(12): 3957-67, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23470181

ABSTRACT

The growth of highly crystalline rubrene thin films for organic field effect transistor (OFET) application remains a challenge. Here, we report on the vapor-deposited growth of rubrene films on the substrates made of cadmium arachidate (CdA) multilayers deposited onto SiO2/Si(100) via the Langmuir-Blodgett technique. The CdA films, containing 2n+1 layers, with integer n ranging from 0 to 4, are surface-terminated identically by the methyl group but exhibit the thickness-dependent morphology. The morphology and structure of both CdA and rubrene films are characterized by X-ray reflectivity (XRR), X-ray diffraction (XRD), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and atomic force microscopy (AFM). Crystalline rubrene films, evidenced by XRD and marked by platelet features in AFM images, become observable when grown onto the CdA layer thicker than 5L. XRD data show that vertical ordering, that is, ordering along surface normal, of CdA multilayer substrates exerts a strong influence in promoting the crystalline growth of rubrene films. This promoted growth is not due to the surface energy of CdA layer but derived from the additional interaction localized between rubrene and CdA island sidewall and presumably strengthened by a close dimensional match between the a-axis of rubrene lattice and the layer spacing of CdA multilayer. The best OFET mobility is recorded for 9L CdA substrate and reaches 6.7 × 10(-2) cm(2) V(-1) s(-1), presumably limited by the roughness of the interface between CdA and rubrene films.

SELECTION OF CITATIONS
SEARCH DETAIL
...