Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636716

ABSTRACT

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Subject(s)
Fluorouracil , Hematopoiesis , Hematopoietic Stem Cells , Mitochondria , Nitric Oxide Synthase Type II , Nitric Oxide , Signal Transduction , Animals , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Hematopoietic Stem Cells/metabolism , Mice , Mitochondria/metabolism , Fluorouracil/pharmacology , Hematopoiesis/genetics , Nitric Oxide/metabolism , Regeneration , Mice, Knockout , Bone Marrow/metabolism , Mice, Inbred C57BL
2.
PLoS Genet ; 13(4): e1006714, 2017 04.
Article in English | MEDLINE | ID: mdl-28419093

ABSTRACT

Microhomology (MH) flanking a DNA double-strand break (DSB) drives chromosomal rearrangements but its role in mutagenesis has not yet been analyzed. Here we determined the mutation frequency of a URA3 reporter gene placed at multiple locations distal to a DSB, which is flanked by different sizes (15-, 18-, or 203-bp) of direct repeat sequences for efficient repair in budding yeast. Induction of a DSB accumulates mutations in the reporter gene situated up to 14-kb distal to the 15-bp MH, but more modestly to those carrying 18- and 203-bp or no homology. Increased mutagenesis in MH-mediated end joining (MMEJ) appears coupled to its slower repair kinetics and the extensive resection occurring at flanking DNA. Chromosomal translocations via MMEJ also elevate mutagenesis of the flanking DNA sequences 7.1 kb distal to the breakpoint junction as compared to those without MH. The results suggest that MMEJ could destabilize genomes by triggering structural alterations and increasing mutation burden.


Subject(s)
DNA End-Joining Repair/genetics , DNA/genetics , Mutagenesis/genetics , Saccharomyces cerevisiae Proteins/genetics , Chromosomes/genetics , DNA Breaks, Double-Stranded/drug effects , DNA-Binding Proteins/genetics , Galactose/genetics , Kinetics , Mutagenesis/drug effects , Mutagenesis, Insertional , Saccharomyces cerevisiae , Translocation, Genetic/drug effects , Translocation, Genetic/genetics
3.
Mutat Res ; 788: 17-24, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26790771

ABSTRACT

Prevalence of microhomology (MH) at the breakpoint junctions in somatic and germ-line chromosomal rearrangements and in the programmed immune receptor rearrangements from cells deficient in classical end joining reveals an enigmatic process called MH-mediated end joining (MMEJ). MMEJ repairs DNA double strand breaks (DSBs) by annealing flanking MH and deleting genetic information at the repair junctions from yeast to humans. Being genetically distinct from canonical DNA DSB pathways, MMEJ is involved with the fusions of eroded/uncapped telomeres as well as with the assembly of chromosome fragments in chromothripsis. In this review article, we will discuss an up-to-date model representing the MMEJ process and the mechanism by which cells regulate MMEJ to limit repair-associated mutagenesis. We will also describe the possible therapeutic gains resulting from the inhibition of MMEJ in recombination deficient cancers. Lastly, we will embark on two contentious issues associated with MMEJ such as the significance of MH at the repair junction to be the hallmark of MMEJ and the relationship of MMEJ to other mechanistically related DSB repair pathways.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Models, Genetic , Animals , Cell Cycle/genetics , Cell Survival/genetics , Homologous Recombination , Humans , INDEL Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...