Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Leukoc Biol ; 92(4): 713-22, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22636319

ABSTRACT

The PRR TLR7 plays a key role in the activation of autoantigen-reactive B cells. This response is increased markedly by IFN-α, produced by accessory cells, as a result of the up-regulation of TLR7. We report herein an alternative pathway by which TLR7 expression can be augmented. This finding was derived from continuation of ongoing studies to uncover interactions between NK and B cells. Here, we have compared gene expression profiles by microarray analysis of B cells before and after their interaction with purified NK cells. The most outstanding alteration of genes transcribed in B cells is a significant increase in the expression of many members of the ISG family, among which is TLR7. Further analysis revealed that the enhancement of TLR7 on B cells is not mediated via type I or type II IFN but by another cytokine, IL-28, a type III IFN, which acts in concert with contact-mediated interactions with NK cells. This increased expression allows B cells to respond more readily upon stimulation by its ligand and may increase in vivo responses to other TLR7 ligands, such as autoantigens, prior to or jointly with stimulation by other cytokines.


Subject(s)
B-Lymphocytes/metabolism , Interferon Type I/physiology , Interferon-gamma/physiology , Killer Cells, Natural/physiology , Membrane Glycoproteins/genetics , Toll-Like Receptor 7/genetics , Animals , B7-2 Antigen/biosynthesis , Cell Communication , Cytokines/physiology , Gene Expression Profiling , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis
2.
J Immunol ; 185(9): 5205-10, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20881194

ABSTRACT

We have previously shown that coincubation of purified B cells with IL-2-propagated NK cells can result in the induction of IL-13 mRNA and that the induction requires the presence of CD48 on B cells and 2B4 on NK cells. Because both of these molecules are expressed on NK cells, it is surprising that very little IL-13 mRNA can be detected in the absence of B cells. We have now found that incubation of NK cells on plates containing immobilized anti-CD48 Abs results in the clustering of CD48 and colocalization with 2B4 on the same cell. This colocalization, together with the requirement for SAP, the signal transducer for 2B4, is necessary for the induction of IL-13 mRNA expression. Activation of NK cell via CD48 on another cell may require a similar ability to alter the configuration of 2B4 to activate downstream signaling. By the use of double CD2/2B4 knockout mice, we have also shown that the induction of NK cell activation by anti-CD48 or by B cells is not due to the release of inhibitory effects of 2B4.


Subject(s)
Antigens, CD/metabolism , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Receptors, Immunologic/metabolism , Animals , Antigens, CD/immunology , CD48 Antigen , Cell Separation , Flow Cytometry , Immunoprecipitation , Killer Cells, Natural/immunology , Ligands , Mice , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Confocal , Receptors, Immunologic/immunology , Reverse Transcriptase Polymerase Chain Reaction , Signaling Lymphocytic Activation Molecule Family
3.
J Biol Chem ; 279(40): 41873-81, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15280356

ABSTRACT

X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that is highly expressed during embryonic development and binds to ectodysplasin-A2 (EDA-A2). In this report, we demonstrate that although XEDAR lacks a death domain, it nevertheless induces apoptosis in an EDA-A2-dependent fashion. The apoptosis-inducing ability of XEDAR is dependent on the activation of caspase 8 and can be blocked by its genetic and pharmacological inhibitors. Although XEDAR-induced apoptosis can be blocked by dominant-negative Fas-associated death domain (FADD) protein and FADD small interfering RNA, XEDAR does not directly bind to FADD, tumor necrosis factor receptor-associated death domain (TRADD) protein, or RIP1. Instead, XEDAR signaling leads to the formation of a secondary complex containing FADD, caspase 8, and caspase 10, which results in caspase activation. Thus, XEDAR belongs to a novel class of death receptors that lack a discernible death domain but are capable of activating apoptosis in a caspase 8- and FADD-dependent fashion. XEDAR may represent an early stage in the evolution of death receptors prior to the emergence of the death domain and may play a role in the induction of apoptosis during embryonic development and adult life.


Subject(s)
Apoptosis , Caspases/metabolism , Receptors, Tumor Necrosis Factor/physiology , Arabidopsis Proteins/metabolism , Caspase 10 , Caspase 8 , Cell Line , Ectodysplasins , Edar Receptor , Enzyme Activation , Fatty Acid Desaturases/metabolism , Humans , Membrane Proteins , Protein Binding , Receptors, Ectodysplasin , Xedar Receptor
4.
Oncogene ; 22(31): 4860-7, 2003 Jul 31.
Article in English | MEDLINE | ID: mdl-12894227

ABSTRACT

In mammals, members of the tumor necrosis factor (TNF) family play an important role in the regulation of cellular proliferation, differentiation and programmed cell death. We describe isolation and characterization of an orthologous ligand/receptor axis in Drosophila. The ligand, designated Eiger, is a type II membrane glycosylated protein, which can be cleaved at residue 145 and released from the cell surface as a soluble factor, thereby representing the first potential cytokine to be described in Drosophila. Eiger exists in two alternatively spliced isoforms, Eiger long (Eiger-L) and Eiger short (Eiger-s), both of which are expressed throughout development and in the adult. We also describe the isolation and characterization of a novel Drosophila member of the TNF receptor family, designated Wengen, which is a type I membrane protein that can physically interact with the recently described TRAF2 homolog dTRAF2. Both Eiger and Wengen are expressed in distinctive patterns during embryogenesis and Eiger is responsive to genotoxic stress. Forced expression of Eiger-L, Eiger-s or Wengen, caused apoptotic cell death which could be rescued by caspase inhibitors or the JNK phosphatase Puckered. In addition, Eiger-induced cell killing was attenuated by RNAi-mediated suppression of Wengen. Our results illustrate that Eiger and Wengen represent proximal components of an evolutionarily conserved TNF-like signaling pathway in Drosophila.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , JNK Mitogen-Activated Protein Kinases , Membrane Proteins/physiology , Receptors, Tumor Necrosis Factor/physiology , Amino Acid Sequence , Animals , Apoptosis , DNA Damage , DNA, Complementary/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Gene Expression Regulation, Developmental , Gene Silencing/drug effects , Glycosylation , MAP Kinase Kinase 4 , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase Kinases/physiology , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/physiology , Protein Processing, Post-Translational , Proteins/metabolism , RNA, Antisense/physiology , RNA, Double-Stranded/pharmacology , RNA, Small Interfering , Receptors, Tumor Necrosis Factor/genetics , Recombinant Fusion Proteins/physiology , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Species Specificity , TNF Receptor-Associated Factor 2 , Transfection , Tumor Necrosis Factor-alpha/chemistry
5.
J Biol Chem ; 277(47): 44953-61, 2002 Nov 22.
Article in English | MEDLINE | ID: mdl-12270937

ABSTRACT

X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to be highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2). By using a subclone of 293F cells with stable expression of XEDAR, we report that XEDAR activates the NF-kappaB and JNK pathways in an EDA-A2-dependent fashion. Treatment with EDA-A2 leads to the recruitment of TRAF3 and -6 to the aggregated XEDAR complex, suggesting a central role of these adaptors in the proximal aspect of XEDAR signaling. Whereas TRAF3 and -6, IKK1/IKKalpha, IKK2/IKKbeta, and NEMO/IKKgamma are involved in XEDAR-induced NF-kappaB activation, XEDAR-induced JNK activation seems to be mediated via a pathway dependent on TRAF3, TRAF6, and ASK1. Deletion and point mutagenesis studies delineate two distinct regions in the cytoplasmic domain of XEDAR, which are involved in binding to TRAF3 and -6, respectively, and play a major role in the activation of the NF-kappaB and JNK pathways. Taken together, our results establish a major role of TRAF3 and -6 in XEDAR signaling and in the process of ectodermal differentiation.


Subject(s)
Membrane Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Proteins/metabolism , Signal Transduction/physiology , Amino Acid Sequence , Animals , Cell Line , Ectodermal Dysplasia/metabolism , Ectodysplasins , Edar Receptor , Enzyme Activation , Genes, Reporter , Humans , I-kappa B Proteins/metabolism , JNK Mitogen-Activated Protein Kinases , Membrane Proteins/genetics , Membrane Proteins/pharmacology , Molecular Sequence Data , Mutation , NF-KappaB Inhibitor alpha , Protein Serine-Threonine Kinases/metabolism , Proteins/genetics , Receptors, Ectodysplasin , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 3 , TNF Receptor-Associated Factor 6 , Xedar Receptor , NF-kappaB-Inducing Kinase
6.
J Biol Chem ; 277(16): 13745-51, 2002 Apr 19.
Article in English | MEDLINE | ID: mdl-11830587

ABSTRACT

The human herpesvirus 8 (HHV8, also called Kaposi's sarcoma-associated herpesvirus) has been linked to Kaposi's sarcoma and primary effusion lymphoma (PEL) in immunocompromised individuals. We demonstrate that PEL cell lines have a constitutively active NF-kappaB pathway, which is associated with persistent phosphorylation of IkappaBalpha. To elucidate the mechanism of NF-kappaB activation in PEL cell lines, we have investigated the role of viral FLICE inhibitory protein (vFLIP) in this process. We report that stable expression of HHV8 vFLIP in a variety of cell lines is associated with persistent NF-kappaB activation caused by constitutive phosphorylation of IkappaBalpha. HHV8 vFLIP gets recruited to a approximately 700-kDa IkappaB kinase (IKK) complex and physically associates with IKKalpha, IKKbeta, NEMO/IKKgamma, and RIP. HHV8 vFLIP is incapable of activating NF-kappaB in cells deficient in NEMO/IKKgamma, thereby suggesting an essential role of an intact IKK complex in this process. Our results suggest that HHV8 vFLIP might contribute to the persistent NF-kappaB activation observed in PEL cells by associating with and stimulating the activity of the cellular IKK complex.


Subject(s)
Caspases/chemistry , Caspases/metabolism , Herpesvirus 8, Human/metabolism , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases/metabolism , Apoptosis , Blotting, Western , CASP8 and FADD-Like Apoptosis Regulating Protein , Carrier Proteins/metabolism , Caspase 8 , Caspase 9 , Cell Line , Chromatography , Enzyme Activation , Herpesvirus 8, Human/chemistry , Humans , I-kappa B Kinase , NF-kappa B/metabolism , Plasmids/metabolism , Precipitin Tests , Protein Binding , Retroviridae/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...