Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(5): 2745-2753, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38279959

ABSTRACT

Given the need, both academic and industrial, for new approaches and technologies for chiral discrimination of enantiomers, the present work demonstrates the development through rational design and integration of two new chiral platforms (molecular and membranous) for enantioselective recognition through visual as well as microscopic observation. The molecular platform (TPT) is based on the tryptophan derivative developed through the condensation of two tryptophan units with terepthaloyl chloride. While TPT based on l-tryptophan recognizes R-mandelic acid over the S-isomer, the host with reverse chirality (TPDT) recognizes S-mandelic acid over R-isomer. The role of chemical functionality in this sensitive recognition process was established experimentally by developing an analogue of TPT and by judiciously using different chiral analytes. Importantly, a detailed theoretical study at the molecular level revealed the U-shaped conformation of TPT, creating a cavity for accommodating a chiral guest with selective functional interaction resulting in the discrimination of enantiomers. Finally, a chiral polymeric mat of poly(methyl methacrylate) (PMMA)/polyacrylonitrile (PAN) (2:3) impregnated with TPT was developed via electrospinning. The resulting fibrous mat was successfully utilized for chiral recognition through microscopic and architectural observation. Hence, the present work reports simple chiral tools for enantiomeric recognition.

2.
Polymers (Basel) ; 13(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205188

ABSTRACT

The ongoing global pandemic has bestowed high priority uponthe separation of air-borne particulate matters (PMs), aerosols, etc. using nonwoven fibrous materials, especially for face masks as a means of personal protection. Although spunbond or meltblown nonwoven materials are amongst the forerunners for polymer microfiber-based face mask or air filter development in mass scale, relatively new process of nonwoven manufacturing such as electrospinning is gaining a lot of momentum amongst the filter membrane manufacturers for its scalability of nanofiber-based filter membrane fabrication. There are several nanofiber-based face masks developing industries, which claim a very high efficiency in filtration of particulate matters (PM0.1-10) as well as other aerosols for their products. Polyvinylidene fluoride (PVDF), which is commonly known for its use of tactile sensors and energy harvesters, due to its piezoelectric property, is slowly gaining popularity among researchers and developers as an air filter material. Electrospun PVDF nanofibers can be as fine as 50 nm in mass scale, which allows the membrane to have large surface area compared to its volume, enhancing nanofiber-PM interaction. At the same time, the breathability index can be improved through these PVDF nanofiber membranes due to their architectural uniqueness that promotes slip flow around the fibers. The conductive nature of PVDF makes it advantageous as a promising electret filter allowing better capturing of ultrafine particles. This review aims to provide a comprehensive overview of such PVDF nanofiber-based filter membranes and their roles in air filtration, especially its application in filtrate of air-borne PMs.

3.
Polymers (Basel) ; 12(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963805

ABSTRACT

With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs' electronic structure, their inherent catalytic capability and the carbon counterparts' stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal-air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.

4.
NPJ Microgravity ; 3: 9, 2017.
Article in English | MEDLINE | ID: mdl-28649631

ABSTRACT

Here, we demonstrate that heat removed in pool boiling from a heater mimicking high-power microelectronics could be used to facilitate a swing-like motion of the heater before being finally dissipated. This swing-like motion could be beneficial for shedding a large vapor bubble that encapsulates high-power heaters in microgravity where buoyancy force is unavailable for vapor bubble removal. The swing-like motion is propelled by vapor bubble recoil, the force which exists irrespective of gravity and buoyancy. We also demonstrate that this force could be significantly enhanced by depositing on the heater surface supersonically blown polymer nanofibers with cross-sectional diameters below 100 nm. These nanofibers provide additional nucleation sites, resulting in much more frequent bubble nucleation and departure, and thus a higher overall vapor recoil force propelling the heater motion. Such nanofibers strongly adhere to the heater surface and withstand prolonged harsh pool boiling. The measured velocity of the model swing-like heater in Novec 7300 fluid is about 1 cm/s.

5.
Nanoscale ; 9(18): 6076-6084, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28443940

ABSTRACT

Mechanically robust freestanding platinum (Pt) nanofiber (NF) meshes are of great interest in applications where the corrosion resistance, malleability, and stability of a pure platinum structure must be combined with high surface area for catalysis. For photoelectrochemical applications, transparent electrodes are desirable. Several 1-dimensional (1D) Pt-based materials have been developed, but energy-intensive fabrication techniques and unsatisfactory performance have limited their practical implementation in next-generation photoelectrochemical applications. Here, we introduce relatively simple yet commercially-viable methods for creating robust, free-standing PtNF mats through combined electrospinning/solution blowing and electroplating steps. The PtNFs obtained by these processes exhibited outstanding low sheet resistance (Rs) values with reasonable transparency. In addition, the PtNFs were highly bendable and stretchable. Thus, the new methods and materials presented here hold great promise for creating mechanically robust and catalytically active transparent conducting films for diverse photoelectrochemical applications.

6.
Mol Pharm ; 13(4): 1393-404, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26950163

ABSTRACT

Sustained controlled drug release is one of the prominent contributions for more successful treatment outcomes in the case of several diseases. However, the incorporation of hydrophilic drugs into nanofibers, a promising novel delivery system, and achieving a long-term sustained release still pose a challenging task. In this work we demonstrated a robust method of avoiding burst release of drugs and achieving a sustained drug release from 2 to 4 weeks using core-shell nanofibers with poly(methyl methacrylate) (PMMA) shell and monolithic poly(vinyl alcohol) (PVA) core or a novel type of core-shell nanofibers with blended (PVA and PMMA) core loaded with ciprofloxacin hydrochloride (CIP). It is also shown that, for core-shell nanofibers with monolithic core, drug release can be manipulated by varying flow rate of the core PVA solution, whereas for core-shell nanofibers with blended core, drug release can be manipulated by varying the ratios between PMMA and PVA in the core. During coaxial electrospinning, when the solvent from the core evaporates in concert with the solvent from the shell, the interconnected pores spanning the core and the shell are formed. The release process is found to be desorption-limited and agrees with the two-stage desorption model. Ciprofloxacin-loaded nanofiber mats developed in the present work could be potentially used as local drug delivery systems for treatment of several medical conditions, including periodontal disease and skin, bone, and joint infections.


Subject(s)
Ciprofloxacin/chemistry , Drug Delivery Systems/methods , Nanofibers/chemistry , Delayed-Action Preparations , Hydrophobic and Hydrophilic Interactions , Spectroscopy, Fourier Transform Infrared
7.
Mol Pharm ; 13(1): 295-305, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26635214

ABSTRACT

Nanofibers represent an attractive novel drug delivery system for prolonged and controlled release. However, sustained release of hydrophilic drugs, like ciprofloxacin hydrochloride (CIP), from polymeric nanofibers is not an easy task. The present study investigates the effect of different hydrophobic polymers (PCL and PMMA) alone in monolithic nanofibers or with hydrophilic polymers (PVA, PEO, and chitosan) in blended nanofibers aiming to achieve sustained CIP release. CIP release from PCL nanofibers was 46% and from PMMA just 1.5% over 40 day period. Thus, PMMA holds great promise for modification of CIP release from blended nanofibers. PMMA blends with 10% PEO, PVA, or chitosan were used to electrospin nanofibers from solution in the mixture of acetic and formic acid. These nanofibers exhibited different drug-release profiles: PEO containing nanofiber mats demonstrated high burst effect, chitosan containing mats revealed very slow gradual release, and PVA containing mats yielded smaller burst effect with favorable sustained release. We have also shown that gradual sustain release of antibiotic like CIP can be additionally tuned over 18 days with various blend ratios of PMMA with PVA or chitosan reaching almost 100%. A mathematical model in agreement with the experimental observation revealed that the sustained CIP release from the blended nanofibers corresponded to the two-stage desorption process.


Subject(s)
Ciprofloxacin/chemistry , Nanofibers/chemistry , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Hydrophobic and Hydrophilic Interactions
8.
Lab Chip ; 14(3): 494-508, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24288141

ABSTRACT

This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10(-7) s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt% with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 µm or 1803 µm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt% CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the 1803 µm-diameter microchannel. These suspensions (1.5 wt% CNT) revealed a temperature reduction due to the PCM fusion of up to 3.2 °C, and a fusion temperature in the range 118-120 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...