Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(33): 22282-22301, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28805221

ABSTRACT

The present investigation reports on the prospect of using state specific multireference perturbation theory (SSMRPT) with an improved virtual orbital complete active space configuration interaction (IVO-CASCI) reference function (IVO-SSMRPT) to generate potential energy surfaces (PESs) for molecular systems [such as CH4, C2H6, C2H4, H2O2, LiH, and KN] by stretching and breaking of suitable bonds with modest basis sets. We have also revisited the dissociation energy profile of triplet ketene which exhibits a step-like structure in the observed rate. The application of the method has also been made to the ionization energies of H2O. Although the perturbative corrections are obtained by the diagonalization of the effective Hamiltonian, in IVO-SSMRPT, only one physically relevant solution is achievable. It is parameter free and does not require any threshold to avoid the intruder problem. It is strictly size-extensive and size-consistent provided that local orbitals are used. The PESs obtained with our approach are smooth all along the reaction path. Our estimates are in close agreement with the available reference data indicating that IVO-SSMRPT is a robust paradigm for the accurate computation of ground, excited and ionized states as it captures the mutual inter-play of different flavors of correlation effects in a balanced and accurate way.

2.
J Chem Phys ; 146(6): 064111, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28201907

ABSTRACT

The state-specific multireference perturbation theory (SSMRPT) with an improved virtual orbital complete active space configuration interaction (IVO-CASCI) reference function [called as IVO-SSMRPT] is used to investigate the energy surface, geometrical parameters, molecular properties of spectroscopic interest for the systems/situations [such as BeH2, BeCH2, MgCH2, Si2H4, unimolecular dissociation of H2CO, and intramolecular reaction pathways of 1,3-butadiene] where the effect of quasidegeneracy cannot be neglected. The merit of using the IVO-CASCI rather than complete active space self-consistent field (CASSCF) is that it is free from iterations beyond those in the initial SCF calculation and the convergence difficulties that plague CASSCF calculations with increasing size of the CAS. While IVO-CASCI describes the non-dynamical correlation, the SSMRPT scheme is a good second-order perturbative approximation to account for the rest of the correlation energy. Our IVO-SSMRPT method is instrumental in avoiding intruder states in an size-extensive manner and allows the revision of the content of wave function in the model space. It can treat model as well as real systems with predictive accuracy, as is evident from the fairly nice accordance between our estimates, and high-level theoretical results. Our estimates also corroborate well with some experimental findings.

3.
J Chem Phys ; 146(1): 011102, 2017 Jan 07.
Article in English | MEDLINE | ID: mdl-28063452

ABSTRACT

Highly accurate electronic structure calculations are often needed to supplement scant experimental data. We report the ground 3D3 and some selected low lying excited/ionized states of Pt and its ions obtained using the Fock space multireference coupled cluster method with four-component relativistic spinors. The present work establishes the stability of the 2S1/2 state of its negative ion and reproduces the binding energy of this state within 10 cm-1. The first ionization potential (cm-1) is estimated to be 72 005, deviating from the experiment by just 200 (0.3%). We also report the magnetic hyperfine coupling constants (A) of Pt and its ions. The present calculation provides the A value (GHz) of the 3D3 state of Pt to be 5.78 exhibiting very good agreement with the experimental data of 5.70. To our knowledge, this is the first relativistic ab initio calculation of the ionization potential and magnetic hyperfine coupling constant for the neutral and ionic states of Pt at a high level of correlation treatment.

4.
J Phys Chem A ; 121(7): 1487-1501, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28112937

ABSTRACT

The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag2, Cu2, Au2, and I2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.

5.
J Phys Chem A ; 120(29): 5897-916, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27355260

ABSTRACT

Recently a state-specific multireference perturbation theory (SSMRPT) with an improved virtual orbitals complete active space configuration interaction (IVO-CASCI) reference function has been proposed for treating electronic structures of radicals such as methylene, m-benzyne, pyridyne, and pyridynium cation. This new development in MRPT, termed as IVO-SSMRPT, ensures that it is able to describe the structure of radicaloids with reasonable accuracy even with small reference spaces. IVO-SSMRPT is also capable of predicting the correct ordering of the lowest singlet-triplet gaps. Investigation of the first three electronic states of the oxygen molecule has also been used for rating our method. The agreement of our estimates with the available far more expensive benchmark state-of-the-art ab initio calculations is creditable. The IVO-SSMRPT method provides an effective avenue with manageable cost/accuracy ratio for accurately dealing with radicaloid systems possessing varying degrees of quasidegeneracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...