Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput Appl ; : 1-22, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37362569

ABSTRACT

Digital data security has become an exigent area of research due to a huge amount of data availability at present time. Some of the fields like medical imaging and medical data sharing over communication platforms require high security against counterfeit access, manipulation and other processing operations. It is essential because the changed/manipulated data may lead to erroneous judgment by medical experts and can negatively influence the human's heath. This work offers a blind and robust medical image watermarking framework using deep neural network to provide effective security solutions for medical images. During watermarking, the region of interest (ROI) data of the original image is preserved by employing the LZW (Lampel-Ziv-Welch) compression algorithm. Subsequently the robust watermark is inserted into the original image using IWT (integer wavelet transform) based embedding approach. Next, the SHA-256 algorithm-based hash keys are generated for ROI and RONI (region of non-interest) regions. The fragile watermark is then prepared by ROI recovery data and the hash keys. Further, the LSB replacement-based insertion mechanism is utilized to embed the fragile watermark into RONI embedding region of robust watermarked image. A deep neural network-based framework is used to perform robust watermark extraction for efficient results with less computational time. Simulation results verify that the scheme has significant imperceptibility, efficient robust watermark extraction, correct authentication and completely reversible nature for ROI recovery. The relative investigation with existing schemes confirms the dominance of the proposed work over already existing work.

2.
Multimed Tools Appl ; 81(10): 14045-14063, 2022.
Article in English | MEDLINE | ID: mdl-35233177

ABSTRACT

Digital medical images contain important information regarding patient's health and very useful for diagnosis. Even a small change in medical images (especially in the region of interest (ROI)) can mislead the doctors/practitioners for deciding further treatment. Therefore, the protection of the images against intentional/unintentional tampering, forgery, filtering, compression and other common signal processing attacks are mandatory. This manuscript presents a multipurpose medical image watermarking scheme to offer copyright/ownership protection, tamper detection/localization (for ROI (region of interest) and different segments of RONI (region of non-interest)), and self-recovery of the ROI with 100% reversibility. Initially, the recovery information of the host image's ROI is compressed using LZW (Lempel-Ziv-Welch) algorithm. Afterwards, the robust watermark is embedded into the host image using a transform domain based embedding mechanism. Further, the 256-bit hash keys are generated using SHA-256 algorithm for the ROI and eight RONI regions (i.e. RONI-1 to RONI-8) of the robust watermarked image. The compressed recovery data and hash keys are combined and then embedded into the segmented RONI region of the robust watermarked image using an LSB replacement based fragile watermarking approach. Experimental results show high imperceptibility, high robustness, perfect tamper detection, significant tamper localization, and perfect recovery of the ROI (100% reversibility). The scheme doesn't need original host or watermark information for the extraction process due to the blind nature. The relative analysis demonstrates the superiority of the proposed scheme over existing schemes.

SELECTION OF CITATIONS
SEARCH DETAIL
...