Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 756: 110019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688397

ABSTRACT

Neutral endopeptidase or neprilysin (NEP) cleaves the natriuretic peptides, bradykinin, endothelin, angiotensin II, amyloid ß protein, substance P, etc., thus modulating their effects on heart, kidney, and other organs. NEP has a proven role in hypertension, heart disease, renal disease, Alzheimer's, diabetes, and some cancers. NEP inhibitor development has been in focus since the US FDA approved a combination therapy of angiotensin II type 1 receptor inhibitor (valsartan) and NEP inhibitor (sacubitril) for use in heart failure. Considering the importance of NEP inhibitors the present work focuses on the designing of a potential lead for NEP inhibition. A structure-based pharmacophore modelling approach was employed to identify NEP inhibitors from the pool of 1140 chemical entities obtained from the ZINC database. Based on the docking score and pivotal interactions, ten molecules were selected and subjected to binding free energy calculations and ADMET predictions. The top two compounds were studied further by molecular dynamics simulations to determine the stability of the ligand-receptor complex. ZINC0000004684268, a phenylalanine derivative, showed affinity and complex stability comparable to sacubitril. However, in silico studies indicated that it may have poor pharmacokinetic parameters. Therefore, the molecule was optimized using bioisosteric replacements, keeping the phenylalanine moiety intact, to obtain five potential lead molecules with an acceptable pharmacokinetic profile. The works thus open up the scope to further corroborate the present in silico findings with the biological analysis.


Subject(s)
Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Neprilysin , Neprilysin/antagonists & inhibitors , Neprilysin/chemistry , Neprilysin/metabolism , Humans , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pharmacophore
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 675-702, 2024 02.
Article in English | MEDLINE | ID: mdl-37615708

ABSTRACT

The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Epigenesis, Genetic
3.
Front Pharmacol ; 13: 1006304, 2022.
Article in English | MEDLINE | ID: mdl-36339619

ABSTRACT

It is estimated that the human genome encodes 15% of proteins that are considered to be disease-modifying. Only 2% of these proteins possess a druggable site that the approved clinical candidates target. Due to this disparity, there is an immense need to develop therapeutics that may better mitigate the disease or disorders aroused by non-druggable and druggable proteins or enzymes. The recent surge in approved oligonucleotide therapeutics (OT) indicates the imminent potential of these therapies. Oligonucleotide-based therapeutics are of intermediate size with much-improved selectivity towards the target and fewer off-target effects than small molecules. The OTs include Antisense RNAs, MicroRNA (MIR), small interfering RNA (siRNA), and aptamers, which are currently being explored for their use in neurodegenerative disorders, cancer, and even orphan diseases. The present review is a congregated effort to present the past and present of OTs and the current efforts to make OTs for plausible future therapeutics. The review provides updated literature on the challenges and bottlenecks of OT and recent advancements in OT drug delivery. Further, this review deliberates on a newly emerging approach to personalized treatment for patients with rare and fatal diseases with OT.

SELECTION OF CITATIONS
SEARCH DETAIL
...