Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 34(22): e2101932, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34850459

ABSTRACT

2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp2 ). Optical and transient microwave spectroscopy reveal that both as-prepared NDI-containing 2DPs are semiconducting with sub-2 eV optical bandgaps and photoexcited charge-carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2 , both 2DPs largely retain their periodic structures and exhibit optical and electron-spin resonance spectroscopic features consistent with the presence of NDI-radical anions. While the native NDI-based 2DPs are electronically insulating, maximum bulk conductivities of >10-4  S cm-1 are achieved by substoichiometric levels of n-doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out-of-plane (π-stacking) crystallographic directions, which indicates that cross-plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well-defined, paramagnetic, 2DP n-type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

2.
Chem Asian J ; 16(22): 3781-3789, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34624932

ABSTRACT

Many efforts are currently devoted to improving the stability and crystallinity of imine-based two-dimensional (2D) covalent organic frameworks (COFs) given their wide range of potential applications. The variation in the relative orientations of the imine bonds has been found to be a critical factor that impacts the stacking of the 2D COF layers, leads to the formation of isomer structures, and influences the crystallinity of the final product. Most investigations to date have focused only on the structural properties, while the role of the imine orientations on the electronic properties has not been studied systematically. Here, we explore this effect by examining how the electronic band structures, electronic couplings, and effective masses evolve when considering four isomeric structures of an imine-linked tetraphenyl-pyrene naphthalene-diimide COF. Our results provide an understanding of the impact of the imine orientations and how they need to be controlled to realize COF inter-layer stackings that can lead to efficient cross-plane electron transport. They can be used to guide the design and synthesis of imine-based COFs for applications where charge transport needs to be optimized.

3.
Phys Chem Chem Phys ; 23(29): 15635-15644, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34268543

ABSTRACT

Organic solar cells (OSC) generally contain long-chain π-conjugated polymers as donor materials, but, more recently, small-molecule donors have also attracted considerable attention. The nature of these compounds is of crucial importance concerning the various processes that determine device performance, among which singlet exciton diffusion is one of the most relevant. The efficiency of the diffusion mechanism depends on several aspects, from system morphology to electronic structure properties, which vary importantly with molecular size. In this work, we investigated the effects of conjugation length on the exciton diffusion length through electronic structure calculations and an exciton diffusion model. By applying extrapolation procedures to thiophene and phenylene vinylene oligomer series, we investigate their electronic and optical properties from the small-molecule point of view to the polymeric limit. Several properties are calculated as a function of oligomer size, including transition energies, absorption and emission spectra, reorganization energies, exciton coupling and Förster radii. Finally, an exciton diffusion model is used to estimate diffusion lengths as a function of oligomer size and for the polymeric limit showing agreement with experimental data. Results also show that longer conjugation lengths correlate with longer exciton diffusion lengths in spite of also being associated with shorter exciton lifetimes.

4.
ACS Appl Mater Interfaces ; 13(18): 21320-21330, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33914514

ABSTRACT

Here, we report on three new triphenylamine-based enamines synthesized by condensation of an appropriate primary amine with 2,2-diphenylacetaldehyde and characterized by experimental techniques and density functional theory (DFT) computations. Experimental results allow highlighting attractive properties including solid-state ionization potential in the range of 5.33-5.69 eV in solid-state and hole mobilities exceeding 10-3 cm2/V·s, which are higher than those in spiro-OMeTAD at the same electric fields. DFT-based analysis points to the presence of several conformers close in energy at room temperature. The newly synthesized hole-transporting materials (HTMs) were used in perovskite solar cells and exhibited performances comparable to that of spiro-OMeTAD. The device containing one newly synthesized hole-transporting enamine was characterized by a power conversion efficiency of 18.4%. Our analysis indicates that the perovskite-HTM interface dominates the properties of perovskite solar cells. PL measurements indicate smaller efficiency for perovskite-to-new HTM hole transfer as compared to spiro-OMeTAD. Nevertheless, the comparable power conversion efficiencies and simple synthesis of the new compounds make them attractive candidates for utilization in perovskite solar cells.

5.
Nat Commun ; 7: 10270, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26831362

ABSTRACT

Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

6.
Phys Chem Chem Phys ; 16(27): 13932-42, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24897996

ABSTRACT

Synthesis and properties of fluorene and carbazole derivatives having three electrophores per molecule with different architectures are reported. The synthesized compounds possess high thermal stabilities with 5% weight loss temperatures exceeding 350 °C. They form glasses with glass transition temperatures ranging from 60 to 68 °C. Cyclovoltammetric experiments revealed the high electrochemical stability of the fluorene trimer. In contrast, 2- and 2,7-fluorenyl substituted carbazole derivatives show irreversible oxidation in the CV experiments. The electron photoemission spectra of the films of the synthesized compounds revealed ionization potentials of 5.65-5.89 eV. Hole drift mobilities in the amorphous layers of the synthesized compounds reach 10(-2) cm(2) V(-1) s(-1) at high electric fields, as established by a xerographic time-of-flight technique. DFT calculations show that HOMO and LUMO orbitals of the compounds are very similar in energy and shape. The similar hole mobilities observed for the three compounds are discussed in the frame of the Marcus theory. An important influence of the alkyl groups on the ionization potentials and on the hole mobilities was also observed and its origin is discussed.

7.
J Phys Chem B ; 117(20): 6304-17, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23631763

ABSTRACT

To understand the influence of orthogonal conjugation pathways fused directly to π-conjugated polymer backbones, we synthesized and studied three series of thiophene-based model compounds containing benzene, naphthalene, and anthracene peri-substituted central cores as representative acenes. These models were functionalized with methyl groups at the reactive thiophene positions in order to generate and observe oxidized species without complications from follow-up polymerization. The neutral monomers and their oxidized charged counterparts were subjected to cyclic voltammetry, spectroelectrochemistry, and EPR spectroscopy as appropriate, and these results were further corroborated with thorough density functional theory studies. This joint experimental and theoretical analysis allowed us to determine that benzene-based conjugated linkers led to more delocalized charge carriers on account of the quinoidal character maintained within the benzene core. In contrast, anthracene-based linkers displayed very localized carriers due to torsional strain between the adjacent aryl groups and to the local evolution of formal aromatic sextets on the benzo-fused rings orthogonal to the backbone in the quinoidal state. In some cases, the electronics of the thiophene-based substituent dominated the electronic properties of the oxidized species regardless of the nature of the central acene linker. These results highlight the dramatic influence that orthogonal conjugation pathways can exert on the electronic properties of π-conjugated materials.

8.
J Chem Theory Comput ; 7(3): 602-9, 2011 Mar 08.
Article in English | MEDLINE | ID: mdl-26596294

ABSTRACT

We have evaluated the performance of several density functional theory (DFT) functionals for the description of the ground-state electronic structure and charge transfer in donor/acceptor complexes. The tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) complex has been considered as a model test case. Hybrid functionals have been chosen together with recently proposed long-range corrected functionals (ωB97X, ωB97X-D, LRC-ωPBEh, and LC-ωPBE) in order to assess the sensitivity of the results to the treatment and magnitude of exact exchange. The results show an approximately linear dependence of the ground-state charge transfer with the HOMOTTF-LUMOTCNQ energy gap, which in turn depends linearly on the percentage of exact exchange in the functional. The reliability of ground-state charge transfer values calculated in the framework of a monodeterminantal DFT approach was also examined.

9.
Chemistry ; 14(11): 3363-70, 2008.
Article in English | MEDLINE | ID: mdl-18283703

ABSTRACT

The alpha-alkylation of amide enolates by using a pseudo-C(2) symmetry trans 4-phenyl-2-trifluoromethyloxazolidine (trans-Fox) as a chiral auxiliary occurs with an extremely high diastereoselectivity (>99 % de). The origin of this excellent stereocontrol was investigated by an experimental and theoretical (DFT) study. With this trans chiral auxiliary, both F...metal and pi...metal interactions compete to give the same diastereomer through Re face alkylation of the enolate. A 5.5 kcal mol(-1) energy difference found between the Re face and the Si face attack transition states is consistent with the complete diastereoselectivity that has been experimentally achieved. On the other hand, in the case of the cis chiral auxiliary (cis-Fox) the competition between the F...metal and pi...metal interactions is unfavourable to the diastereoselectivity. In this case, the Re face and the Si face attack transition states were found to be nearly isoenergetic (0.3 kcal mol(-1) difference), which is in good agreement with the very low diastereoselectivity observed.


Subject(s)
Fluorine/chemistry , Metals, Alkali/chemistry , Oxazoles/chemistry , Alkylation , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Theoretical , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...