Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38399723

ABSTRACT

H. pylori eradication therapy leads to significant changes in the gut microbiome, including influence on the gut microbiome's functional potential. Probiotics are one of the most studied potential methods for reducing the microbiota-related consequences of antibiotics. However, the beneficial effects of probiotics are still under discussion. In addition, there are some concerns about the safety of probiotics, emphasizing the need for research of other therapeutic interventions. The aim of our study was to evaluate the influence of butyric acid+inulin supplements on gut microbiota changes (the gut microbiota composition, abundance of metabolic pathways, and gut resistome) caused by H. pylori eradication therapy. MATERIALS AND METHODS: Twenty two H. pylori-positive patients, aged 19 to 64 years, were enrolled in the study and randomized into two treatment groups, as follows: (1) ECAB-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, per os, for 14 days, and (2), ECAB-Z-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, along with butyric acid+inulin (Zacofalk), two tablets daily, each containing 250 mg of butyric acid, and 250 mg of inulin, per os, for 14 days. Fecal samples were collected from each subject prior to eradication therapy (time point I), after the end of eradication therapy (time point II), and a month after the end of eradication therapy (time point III). The total DNA from the fecal samples was isolated for whole genome sequencing using the Illumina NextSeq 500 platform. Qualitative and quantitative changes in gut microbiota were assessed, including alpha and beta diversity, functional potential and antibiotic resistance gene profiling. RESULTS: Gut microbiota alpha diversity significantly decreased compared with the baseline immediately after eradication therapy in both treatment groups (ECAB-14 and ECAB-Z-14). This diversity reached its baseline in the ECAB-Z-14 treatment group a month after the end of eradication therapy. However, in the ECAB-14 treatment arm, a reduction in the Shannon index was observed up to a month after the end of H. pylori eradication therapy. Fewer alterations in the gut microbiota functional potential were observed in the ECAB-Z-14 treatment group. The abundance of genes responsible for the metabolic pathway associated with butyrate production decreased only in the ECAB-14 treatment group. The prevalence of antibiotic-resistant genes in the gut microbiota increased significantly in both treatment groups by the end of treatment. However, more severe alterations were noted in the ECAB-14 treatment group. CONCLUSIONS: H. pylori eradication therapy leads to taxonomic changes, a reduction in the alpha diversity index, and alterations in the functional potential of the gut microbiota and gut resistome. Taking butyric acid+inulin supplements during H. pylori eradication therapy could help maintain the gut microbiota in its initial state and facilitate its recovery after H. pylori eradication.

2.
Microorganisms ; 11(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37317208

ABSTRACT

Lactiplantibacillus plantarum is best known for its significant adaptive potential and ability to colonize different ecological niches. Different strains of L. plantarum are widely used as probiotics. To characterize the probiotic potential of the novel L. plantarum FCa3L strain isolated from fermented cabbage, we sequenced its whole genome using the Illumina MiSeq platform. This bacterial isolate had a circular chromosome of 3,365,929 bp with 44.3% GC content and a cyclic phage phiX174 of 5386 bp with 44.7% GC content. The results of in vitro studies showed that FCa3L was comparable with the reference probiotic strain L. plantarum 8PA3 in terms of acid and bile tolerance, adhesiveness, H2O2 production, and acidification rate. The strain 8PA3 possessed higher antioxidant activity, while FCa3L demonstrated superior antibacterial properties. The antibiotic resistance of FCa3L was more relevant to the probiotic strain than that of 8PA3, although a number of silent antibiotic resistance genes were identified in its genome. Genomic evidence to support adhesive and antibacterial properties, biosynthesis of bioactive metabolites, and safety of FCa3L was also presented. Thus, this study confirmed the safety and probiotic properties of L. plantarum FCa3L via complete genome and phenotype analysis, suggesting its potential as a probiotic, although further in vivo investigations are still necessary.

3.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175705

ABSTRACT

Crohn's disease (CD) is a chronic relapsing inflammatory bowel disease of unknown etiology. Genetic predisposition and dysbiotic gut microbiota are important factors in the pathogenesis of CD. In this study, we analyzed the taxonomic composition of the gut microbiota and genotypes of 24 single nucleotide polymorphisms (SNP) associated with the risk of CD. The studied cohorts included 96 CD patients and 24 healthy volunteers from Russia. Statistically significant differences were found in the allele frequencies for 8 SNPs and taxonomic composition of the gut microbiota in CD patients compared with controls. In addition, two types of gut microbiota communities were identified in CD patients. The main distinguishing driver of bacterial families for the first community type are Bacteroidaceae and unclassified members of the Clostridiales order, and the second type is characterized by increased abundance of Streptococcaceae and Enterobacteriaceae. Differences in the allele frequencies of the rs9858542 (BSN), rs3816769 (STAT3), and rs1793004 (NELL1) were also found between groups of CD patients with different types of microbiota communities. These findings confirm the complex multifactorial nature of CD.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Crohn Disease/pathology , Polymorphism, Single Nucleotide , Gastrointestinal Microbiome/genetics , Intestines/pathology
4.
Appl Microbiol Biotechnol ; 106(8): 3153-3171, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35396956

ABSTRACT

The Tsukamurella tyrosinosolvens PS2 strain was isolated from hydrocarbons-contaminated petrochemical sludge as a long chain alkane-utilizing bacteria. Complete genome analysis showed the presence of two alkane oxidation systems: alkane 1-monooxygenase (alkB) and cytochrome P450 monooxygenase (P450) genes with established high homology to the well-known alkane-degrading actinobacteria. According to the comparative genome analysis, both systems have a wide distribution among environmental and clinical isolates of the genus Tsukamurella and other members of Actinobacteria. We compared the expression of different proteins during the growth of Tsukamurella on sucrose and on hexadecane. Both alkane monooxygenases were upregulated on hexadecane: AlkB-up to 2.5 times, P450-up to 276 times. All proteins of the hexadecane oxidation pathway to acetyl-CoA were also upregulated. Accompanying proteins for alkane degradation involved in biosurfactant synthesis and transport of organic and inorganic molecules were increased. The change in the carbon source affected the pathways for the regulation of translation and transcription. The proteomic profile showed that hexadecane is an adverse factor causing activation of general and universal stress proteins as well as shock and resistance proteins. Differently expressed proteins of Tsukamurella tyrosinosolvens PS2 shed light on the alkane degradation in other members of Actinobacteria class. KEY POINTS: • alkB and P450 systems have a wide distribution among the genus Tsukamurella. • alkB and P450 systems have coexpression with the predominant role of P450 protein. • Hexadecane causes significant changes in bacterial proteome.


Subject(s)
Actinomycetales , Proteomics , Actinobacteria , Actinomycetales/genetics , Actinomycetales/metabolism , Alkanes/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Cytochrome P-450 CYP4A/genetics , Cytochrome P-450 CYP4A/metabolism
5.
Microorganisms ; 9(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203637

ABSTRACT

Crohn's disease (CD) is characterized by a chronic, progressive inflammation across the gastrointestinal tract with a series of exacerbations and remissions. A significant factor in the CD pathogenesis is an imbalance in gut microbiota composition, particularly the prevalence of Escherichia coli. In the present study, the genomes of sixty-three E. coli strains from the gut of patients with CD and healthy subjects were sequenced. In addition, eighteen E. coli-like metagenome-assembled genomes (MAGs) were reconstructed from the shotgun-metagenome sequencing data of fecal samples. The comparative analysis revealed the similarity of E. coli genomes regardless of the origin of the strain. The strains exhibited similar genetic patterns of virulence, antibiotic resistance, and bacteriocin-producing systems. The study showed antagonistic activity of E. coli strains and the metabolic features needed for their successful competition in the human gut environment. These observations suggest complex bacterial interactions within the gut which may affect the host and cause intestinal damage.

6.
Data Brief ; 28: 104948, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31886370

ABSTRACT

Dysbiosis of the gut microbiota in inflammatory bowel disease (IBD) patients is of great interest. It has been reported that Crohn's disease (CD) is associated with a general decrease in microbial diversity [1]. Altered microbial composition and function in CD results in imbalance in host-bacteria interaction and increased immune stimulation [2]. It is shown that microbiota in CD is characterized by increased proportion of E. coli in human gut in contrast to healthy individuals [3]. However, the overall qualitative and quantitative diversity of E. coli strains in CD is not fully understood. Here, we present a dataset of whole-genome sequences of E. coli's.

7.
PLoS One ; 14(12): e0225929, 2019.
Article in English | MEDLINE | ID: mdl-31830070

ABSTRACT

Endolithic microbial communities survive nutrient and energy deficient conditions while contributing to the weathering of their mineral substrate. This study examined the mineral composition and microbial communities of fully serpentinized weathered rock from 0.1 to 6.5 m depth at a site within the Khalilovsky massif, Orenburg Region, Southern Ural Mountains, Russia. The mineral composition includes a major content of serpentinite family (mostly consisting of lizardite and chrysotile), magnesium hydrocarbonates (hydromagnesite with lesser amounts of hydrotalcite and pyroaurite) concentrated in the upper layers, and clay minerals. We found that the deep-seated weathered serpentinites are chrysotile-type minerals, while the middle and surface serpentinites mostly consist of lizardite and chrysotile types. Microbial community analysis, based on 16S rRNA gene sequencing, showed a similar diversity of phyla throughout the depth profile. The dominant bacterial phyla were the Actinobacteria (of which unclassified genera in the orders Acidimicrobiales and Actinomycetales were most numerous), Chloroflexi (dominated by an uncultured P2-11E order) and the Proteobacteria (predominantly class Betaproteobacteria). Densities of several groups of bacteria were negatively correlated with depth. Occurrence of the orders Actinomycetales, Gaiellales, Solirubrobacterales, Rhizobiales and Burkholderiales were positively correlated with depth. Our findings show that endolithic microbial communities of the Khalilovsky massif have similar diversity to those of serpentine soils and rocks, but are substantially different from those of the aqueous environments of actively serpentinizing systems.


Subject(s)
Asbestos, Serpentine/analysis , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Microbiota , Minerals/analysis , Soil Microbiology , Biodiversity , Computational Biology/methods , Metagenome , Metagenomics/methods , Phylogeny , RNA, Ribosomal, 16S/genetics , Russia , Spectrum Analysis
8.
Microbiol Resour Announc ; 8(17)2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31023793

ABSTRACT

Here, we report the genome sequence of Tsukamurella tyrosinosolvens strain PS2, which was isolated from hydrocarbon sludge of an organic synthesis factory. This strain was able to utilize a wide range of n-alkanes, from C16 to C35, as sole carbon sources. Knowledge of the genome will provide insights into long-chain n-alkane biodegradation mechanisms.

9.
Genome Announc ; 6(2)2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29326221

ABSTRACT

Acholeplasma laidlawii is a well-suited model for studying the molecular basis for adapting mollicutes to environmental conditions. Here, we present the whole-genome sequences of two strains of A. laidlawii with increased resistance to tetracycline and melittin.

10.
Genome Announc ; 5(44)2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29097461

ABSTRACT

Acholeplasma laidlawii is a well-suited model for study of the molecular basis of the adaptation of mollicutes to environmental conditions. Here we present the whole-genome sequences of four strains of A. laidlawii with differential sensitivity to ciprofloxacin.

11.
Data Brief ; 14: 458-461, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28831408

ABSTRACT

The shotgun sequencing data presented in this report are related to the research article named "Gut microbiome shotgun sequencing in assessment of microbial community changes associated with H. pylori eradication therapy" (Khusnutdinova et al., 2016) [1]. Typically, the H. pylori eradication protocol includes a prolonged two-week use of the broad-spectrum antibiotics. The presented data on the whole-genome sequencing of the total DNA from stool samples of patients before the start of the eradication, immediately after eradication and several weeks after the end of treatment could help to profile the gut microbiota both taxonomically and functionally. The presented data together with those described in Glushchenko et al. (2017) [2] allow researchers to characterize the metagenomic profiles in which the use of antibiotics could result in dramatic changes in the intestinal microbiota composition. We perform 15 gut metagenomes from 5 patients with H. pylori infection, obtained through the shotgun sequencing on the SOLiD 5500 W platform. Raw reads are deposited in the ENA under project ID PRJEB21338.

12.
Microbiology (Reading) ; 162(8): 1479-1489, 2016 08.
Article in English | MEDLINE | ID: mdl-27230482

ABSTRACT

Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was →3)-α-d-GalpNAc-(1→4)-α-d-GalpNAcA-(1→3)-ß-d-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the ß-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes.


Subject(s)
Acetyltransferases/genetics , Acinetobacter baumannii/genetics , Bacterial Capsules/genetics , Genomic Islands/genetics , Glycosyltransferases/genetics , Polysaccharides, Bacterial/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/metabolism , Bacterial Capsules/metabolism , Humans , Multigene Family/genetics , Polysaccharides, Bacterial/metabolism
13.
Genome Announc ; 3(6)2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26634752

ABSTRACT

Here, we report the draft genome sequence of Agreia bicolorata strain AC-1804, isolated from narrow reed grass galls induced by a plant-parasitic nematode which is able to produce large amounts of carotenoid pigments. The draft genome sequence of 3,919,485 bp provides a resource for carotenoid pathway research.

14.
Bioresour Technol ; 193: 42-52, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117234

ABSTRACT

This study evaluates the effects of increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) as well as phosphoric acid addition on mesophilic reactors' performance and biogas production from chicken wastes. Furthermore, microbial community composition in reactors was characterized by a 16S rRNA gene-based pyrosequencing analysis. Each step of increasing OLR impacted on the activity of microorganisms what caused a temporary decrease in biogas production. The addition of phosphoric acid resulted in the increased biogas production with values between 361 and 447 mL g(VS)(-1) from day 61 to day 74 compared to control reactor (309-350 mL g(VS)(-1)). With reactors' operation, Bacteroidetes phylotypes were noticeably replaced with Firmicutes representatives, and significant increase of Clostridium sp. was identified. Within Euryarchaeota, Methanosarcina sp. dominated in all analyzed samples, in which high ammonium levels were detected (3.4-4.9 NH4(+)-N g L(-1)). These results can help in better understanding the anaerobic digestion process of simultaneously ammonium/phosphate-rich substrates.


Subject(s)
Biofuels/microbiology , Bioreactors/microbiology , Chickens/microbiology , Phosphoric Acids/metabolism , Ammonium Compounds/metabolism , Anaerobiosis/physiology , Animals , Bacteroidetes/metabolism , Clostridium/metabolism , Firmicutes/metabolism , Methanosarcina/metabolism , RNA, Ribosomal, 16S/genetics , Refuse Disposal/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...