Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(26): 12424-12430, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38887059

ABSTRACT

Existing methods for the mass detection of viruses are limited to the registration of small amounts of a viral genome or specific protein markers. In spite of high sensitivity, the applied methods cannot distinguish between virulent viral particles and non-infectious viral particle debris. We report an approach to solve this long-standing challenge using the SARS-CoV-2 virus as an example. We show that wide-field optical microscopy with the state-of-the-art mesoscopic fluorescent labels, formed by a core-shell plasmonic nanoparticle with fluorescent dye molecules in the core-shell that are strongly coupled to the plasmonic nanoparticle, not only rapidly, i.e. in less than 20 minutes after sampling, detects SARS-CoV-2 virions directly in a patient sample without a pre-concentration step, but can also distinguish between infectious and non-infectious virus strains by counting the spikes on the lipid envelope of individual viral particles.


Subject(s)
COVID-19 , Fluorescent Dyes , SARS-CoV-2 , Virion , SARS-CoV-2/isolation & purification , Virion/isolation & purification , Virion/chemistry , Humans , COVID-19/virology , COVID-19/diagnosis , Fluorescent Dyes/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Metal Nanoparticles/chemistry , Microscopy, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...