Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Anal Biochem ; 684: 115374, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37914005

ABSTRACT

The overexpression and/or amplification of the HER2/neu oncogene has been proposed as a prognostic marker in breast cancer. The detection of the related peptide HER2 remains a grand challenge in cancer diagnosis and for therapeutic decision-making. Here, we used a biosensing device based on Bloch Surface Waves excited on a one-dimensional photonic crystal (1DPC) as valid alternative to standard techniques. The 1DPC was optimized to operate in the visible spectrum and the biosensor optics has been designed to combine label-free and fluorescence operation modes. This feature enables a real-time monitoring of a direct competitive assay using detection mAbs conjugated with quantum dots for an accurate discrimination in fluorescence mode between HER2-positive/negative human plasma samples. Such a competitive assay was implemented using patterned alternating areas where HER2-Fc chimera and reference molecules were bio-conjugated and monitored in a multiplexed way. By combining Label-Free and fluorescence detection analysis, we were able to tune the parameters of the assay and provide an HER2 detection in human plasma in less than 20 min, allowing for a cost-effective assay and rapid turnaround time. The proposed approach offers a promising technique capable of performing combined label-free and fluorescence detection for both diagnosis and therapeutic monitoring of diseases.


Subject(s)
Biosensing Techniques , Receptor, ErbB-2 , Humans , Receptor, ErbB-2/blood , Fluorescence , Antibodies, Monoclonal/chemistry , Lab-On-A-Chip Devices , Protein Array Analysis
2.
Analyst ; 148(18): 4429-4437, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37555461

ABSTRACT

We report on the use of biochips based on one-dimensional photonic crystals sustaining Bloch surface waves to specifically detect target miRNA that is characteristic of hemorrhagic stroke (miR-16-5p) at low concentration in a buffer solution. The biochips were functionalized with streptavidin and ssDNA oligonucleotides to enable miRNA detection. To discriminate the target miRNA from a non-specific control (miR-101a-3p), we made use of an optical platform developed to work both in label-free and fluorescence detection modes. We demonstrate that the limit of detection provided when operating in the fluorescence mode allows us to specifically detect the target miRNA down to 1 ng mL-1 (140 pM), which matches the recommendations for diagnostic miRNA assays, 5 ng mL-1. The low costs open the way towards the application of these disposable optical biochips based on 1DPC sustaining Bloch surface waves as a promising tool for early disease detection in a liquid biopsy format.


Subject(s)
MicroRNAs , Optics and Photonics , Photons , Spectrometry, Fluorescence
3.
ACS Appl Mater Interfaces ; 14(38): 43853-43860, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36106792

ABSTRACT

The growing need for new and reliable surface sensing methods is arousing interest in the electromagnetic excitations of ultrathin films, i.e., to generate electromagnetic field distributions that resonantly interact with the most significant quasi-particles of condensed matter. In such a context, Bloch surface waves turned out to be a valid alternative to surface plasmon polaritons to implement high-sensitivity sensors in the visible spectral range. Only in the last few years, however, has their use been extended to infrared wavelengths, which represent a powerful tool for detecting and recognizing molecular species and crystalline structures. In this work, we demonstrate, by means of high-resolution reflectivity measurements, that a one-dimensional photonic crystal can sustain Bloch surface waves in the infrared spectral range from room temperature down to 10 K. To the best of our knowledge, this is the first demonstration of infrared Bloch surface waves at cryogenic temperatures. Furthermore, by exploiting the enhancement of the surface state and the high brilliance of infrared synchrotron radiation, we demonstrate that the proposed BSW-based sensor has a sensitivity on the order of 2.9 cm-1 for each nanometer-thick ice layer grown on its surface below 150 K. In conclusion, we believe that Bloch surface wave-based sensors are a valid new class of surface mode-based sensors for applications in materials science.

4.
ACS Photonics ; 8(1): 350-359, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33585665

ABSTRACT

The many fundamental roto-vibrational resonances of chemical compounds result in strong absorption lines in the mid-infrared region (λ ∼ 2-20 µm). For this reason, mid-infrared spectroscopy plays a key role in label-free sensing, in particular, for chemical recognition, but often lacks the required sensitivity to probe small numbers of molecules. In this work, we propose a vibrational sensing scheme based on Bloch surface waves (BSWs) on 1D photonic crystals to increase the sensitivity of mid-infrared sensors. We report on the design and deposition of CaF2/ZnS 1D photonic crystals. Moreover, we theoretically and experimentally demonstrate the possibility to sustain narrow σ-polarized BSW modes together with broader π-polarized modes in the range of 3-8 µm by means of a customized Fourier transform infrared spectroscopy setup. The multilayer stacks are deposited directly on CaF2 prisms, reducing the number of unnecessary interfaces when exciting in the Kretschmann-Raether configuration. Finally, we compare the performance of mid-IR sensors based on surface plasmon polaritons with the BSW-based sensor. The figures of merit found for BSWs in terms of confinement of the electromagnetic field and propagation length puts them as forefrontrunners for label-free and polarization-dependent sensing devices.

5.
Anal Bioanal Chem ; 412(14): 3509-3517, 2020 May.
Article in English | MEDLINE | ID: mdl-32300843

ABSTRACT

We report on the combined label-free/fluorescence use of one-dimensional photonic crystals to optimize cancer biomarker detection in complex biological media. The optimization of the assay working parameters permits us to maximize the final response of the biosensor. The detection approach utilizes a sandwich assay, in which one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies in order to guarantee high specificity during biological recognition. The multiple outcomes generated by such optimization experiments permitted us to determine the effective capture efficiency and the repeatability of the immobilization process, which was estimated to be close to 5%. By exploiting the resolution of the fluorescence operation mode, we studied non-specific interactions in different blocking agents, different analyte diluting buffers, and diverse concentrations of the detection antibody. As a clinically relevant biomarker, we selected the trans-membrane receptor tyrosine kinase HER2. HER2 regulates a variety of cell proliferation, growth, and differentiation pathways and its over-expression occurs in approximately 20-30% of breast cancer worldwide. As a final application, we transferred all the optimized working parameters to HER2 cancer biomarker assays in a complex biological environment. The label-free and fluorescence results obtained by analyzing MCF-7 (HER2 low positive) and 32D (HER2 negative) cell lysates demonstrate that we can successfully discriminate the two lysates.


Subject(s)
Biosensing Techniques/instrumentation , Receptor, ErbB-2/analysis , Antibodies, Immobilized/chemistry , Antibodies, Monoclonal/chemistry , Biomarkers, Tumor/analysis , Breast Neoplasms/diagnosis , Equipment Design , Female , Fluorescence , Humans , MCF-7 Cells , Optics and Photonics/instrumentation , Spectrometry, Fluorescence/instrumentation
6.
Biosensors (Basel) ; 8(3)2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30044392

ABSTRACT

Optical biosensors based on one-dimensional photonic crystals sustaining Bloch surface waves are proposed to study antibody interactions and perform affinity studies. The presented approach utilizes two types of different antibodies anchored at the sensitive area of a photonic crystal-based biosensor. Such a strategy allows for creating two or more on-chip regions with different biochemical features as well as studying the binding kinetics of biomolecules in real time. In particular, the proposed detection system shows an estimated limit of detection for the target antibody (anti-human IgG) smaller than 0.19 nM (28 ng/mL), corresponding to a minimum surface mass coverage of 10.3 ng/cm². Moreover, from the binding curves we successfully derived the equilibrium association and dissociation constants (KA = 7.5 × 107 M-1; KD = 13.26 nM) of the human IgG⁻anti-human IgG interaction.


Subject(s)
Antibodies/analysis , Biosensing Techniques/methods , Immunoglobulin G/analysis , Nanostructures/chemistry , Optics and Photonics/methods , Photons , Antibodies/immunology , Biosensing Techniques/instrumentation , Humans , Immunoglobulin G/immunology , Optics and Photonics/instrumentation
7.
Biomed Opt Express ; 9(2): 529-542, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29552391

ABSTRACT

Quantitative detection of angiogenic biomarkers provides a powerful tool to diagnose cancers in early stages and to follow its progression during therapy. Conventional tests require trained personnel, dedicated laboratory equipment and are generally time-consuming. Herein, we propose our developed biosensing platform as a useful tool for a rapid determination of Angiopoietin-2 biomarker directly from patient plasma within 30 minutes, without any sample preparation or dilution. Bloch surface waves supported by one dimensional photonic crystal are exploited to enhance and redirect the fluorescence arising from a sandwich immunoassay that involves Angiopoietin-2. The sensing units consist of disposable and low-cost plastic biochips coated with the photonic crystal. The biosensing platform is demonstrated to detect Angiopoietin-2 in plasma samples at the clinically relevant concentration of 6 ng/mL, with an estimated limit of detection of approximately 1 ng/mL. This is the first Bloch surface wave based assay capable of detecting relevant concentrations of an angiogenic factor in plasma samples. The results obtained by the developed biosensing platform are in close agreement with enzyme-linked immunosorbent assays, demonstrating a good accuracy, and their repeatability showed acceptable relative variations.

8.
Biosensors (Basel) ; 7(3)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28817097

ABSTRACT

We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.


Subject(s)
Biomarkers, Tumor/analysis , Biosensing Techniques/methods , Molecular Diagnostic Techniques/methods , Optical Imaging/methods , Photons , Receptor, ErbB-2/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/standards , Cell Line, Tumor , Humans , Limit of Detection , Molecular Diagnostic Techniques/instrumentation , Optical Imaging/instrumentation , Optical Imaging/standards , Reproducibility of Results
9.
Opt Lett ; 42(14): 2798-2801, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28708172

ABSTRACT

We report on the fabrication and physical characterization of optical biosensors implementing simultaneous label-free and fluorescence detection and taking advantage of the excitation of Bloch surface waves at a photonic crystal's truncation interface. Two types of purposely designed one-dimensional photonic crystals on molded organic substrates with micro-optics were fabricated. These crystals feature either high or low finesse of the Bloch surface wave resonances and were tested on the same optical readout system. The experimental results show that designing biochips with a large resonance quality factor does not necessarily lead in the real case to an improvement of the biosensor performance. The conditions for optimal biochip design and operation of the complete bio-sensing platform are established.


Subject(s)
Biosensing Techniques/instrumentation , Fluorescence , Electromagnetic Phenomena , Optics and Photonics , Photons
10.
Adv Food Nutr Res ; 82: 149-204, 2017.
Article in English | MEDLINE | ID: mdl-28427532

ABSTRACT

Nanotechnology has paved the way to innovative food packaging materials and analytical methods to provide the consumers with healthier food and to reduce the ecological footprint of the whole food chain. Combining antimicrobial and antifouling properties, thermal and mechanical protection, oxygen and moisture barrier, as well as to verify the actual quality of food, e.g., sensors to detect spoilage, bacterial growth, and to monitor incorrect storage conditions, or anticounterfeiting devices in food packages may extend the products shelf life and ensure higher quality of foods. Also the ecological footprint of food chain can be reduced by developing new completely recyclable and/or biodegradable packages from natural and eco-friendly resources. The contribution of nanotechnologies to these goals is reviewed in this chapter, together with a description of portable devices ("lab-on-chip," sensors, nanobalances, etc.) which can be used to assess the quality of food and an overview of regulations in force on food contact materials.


Subject(s)
Food Packaging/instrumentation , Food/standards , Nanotechnology , Biosensing Techniques , Food Safety , Humans , Legislation, Food
11.
Biosens Bioelectron ; 92: 125-130, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28209555

ABSTRACT

We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of ERBB2/neu/Her2 in cell lysates. ERBB2 is a pivotal breast cancer biomarker and targetable oncogenic driver associated with aggressive breast cancer subtypes. To quantitate soluble ERBB2, we developed an optical platform that combines label-free and fluorescence detection modes. Such platform makes use of a sandwich assay in which the one-dimensional photonic crystals sustaining Bloch surface waves are tailored with a monoclonal antibody for highly specific biological recognition (BSW biochip). In a second step, a second antibody to ERBB2 quantitatively detects the bound analyte. The strategy of the present approach takes advantage of the combination of label-free and fluorescence techniques, making bio-recognition more robust and sensitive. In the fluorescence operation mode, the platform can attain the limit of detection 0.3ng/mL (1.5pM) for ERBB2 in cell lysates. Such resolution meets the international guidelines and recommendations (15ng/mL) for diagnostic ERBB2 assays that in the future may help to more precisely assign therapies counteracting cancer cell proliferation and metastatic spread.


Subject(s)
Biosensing Techniques/instrumentation , Breast Neoplasms/diagnosis , Breast/pathology , Receptor, ErbB-2/analysis , Antibodies, Monoclonal/chemistry , Biomarkers, Tumor/analysis , Cell Line, Tumor , Equipment Design , Female , Fluorescence , Humans , Lab-On-A-Chip Devices , Limit of Detection
12.
Opt Express ; 24(7): 7728-42, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27137058

ABSTRACT

We investigated experimentally and numerically the robustness of optical sensors based on Bloch waves at the surface of periodic one-dimensional photonic crystals. The distributions of sensor characteristics caused by the fabrication uncertainties in dielectric layer thicknesses have been analyzed and robustness criteria have been set forth and discussed. We show that the performance of the surface wave sensors is sufficiently robust with respect to the changes of the photonic crystal layer thicknesses. Layer thickness optimization of the photonic crystal, carried out to achieve low limit of detection, leads to an improvement of the robustness of the surface wave sensors that is attributed to Bloch states lying deeper in the photonic band gap.

13.
Anal Bioanal Chem ; 407(14): 3965-74, 2015 May.
Article in English | MEDLINE | ID: mdl-25782873

ABSTRACT

In label-free biosensing, a continuous improvement of the limit of detection is necessary to resolve the small change of the surface refractive index produced by interacting biomolecules at a very small concentration. In the present work, optical sensors based on one-dimensional photonic crystals supporting Bloch surface waves are proposed and adopted for label-free optical biosensing. We describe the implementation of an angularly resolved ellipsometric optical sensing scheme based on Bloch surface waves sustained by tantala/silica multilayers. The angular operation is obtained using a focused beam at fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. The results show that the experimental limit of detection for a particular photonic crystal design is 6.5 × 10(-7) refractive index units (RIU)/Hz(1/2) and further decrease could be obtained. For the first time, we report on the practical application of this technique to a cancer biomarker protocol that aims at the detection of a specific glycoprotein (angiopoietin 2) involved in angiogenesis and inflammation processes.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Optical Imaging/instrumentation , Optical Imaging/methods , Angiopoietin-2/chemistry , Angiopoietin-2/immunology , Animals , Antibodies , Biomarkers, Tumor , Humans , Lasers , Mice , Optics and Photonics , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Refractometry
14.
Opt Lett ; 39(10): 2947-50, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24978244

ABSTRACT

We report on the design, fabrication, and characterization of optical sensors based on Bloch surface waves propagating at the truncation edge of one-dimensional photonic crystals. The sensors can be simultaneously operated in both a label-free mode, where small refractive index changes at the surface are detected, and a fluorescence mode, where the fluorescence from a novel heptamethyne dye label in the proximity of the surface is collected. The two modes operate in the near-infrared spectral range with the same configuration of the optical reading apparatus. The limit of detection is shown to be smaller than that of equivalent surface plasmon sensors and the fluorescence collection efficiency is such that it can be efficiently analyzed by the same camera sensor used for label-free operation.

15.
Opt Express ; 21(20): 23331-44, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104247

ABSTRACT

We report on the investigation on the resolution of optical sensors exploiting Bloch surface waves sustained by one dimensional photonic crystals. A figure of merit is introduced to quantitatively assess the performance of such sensors and its dependency on the geometry and materials of the photonic crystal. We show that the figure of merit and the resolution can be improved by adopting a full ellipsometric phase-sensitive approach. The theoretical predictions are confirmed by experiments in which, for the first time, such type of sensors are operated in the full ellipsometric scheme.

16.
Opt Lett ; 38(5): 616-8, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455242

ABSTRACT

We exploit the excitation of electromagnetic surface waves on high-quality dielectric multilayers to measure the very low extinction coefficient of the structures, with a resolution down to 4·10(-7) and in a simple optical configuration. The effect of exposition to a rhodamine 6G solution in water and ethanol is also reported, including dye adsorption in the layers and bleaching upon resonant excitation.

17.
Biomed Opt Express ; 3(10): 2405-10, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23082282

ABSTRACT

We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

SELECTION OF CITATIONS
SEARCH DETAIL
...