Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 28(4): 707-15, 2008.
Article in English | MEDLINE | ID: mdl-18037285

ABSTRACT

Meat and bone meal (MBM) is obtained from the wastes produced during slaughtering operations. Its high concentration of N and P makes it interesting as an organic fertiliser but its use in soil has been barely studied previously. In this work four laboratory experiments were performed to study the influence of different variables (MBM composition, rate of application, temperature of incubation and the type of soil) on C mineralization dynamics of MBM in agricultural soils. The total CO2-C evolved (as % of added C) after 2 weeks ranged between 10% and 20%. The kinetics of mineralization were rapid, with C evolved as CO2 within the first 4 days representing more than 50% of total C mineralized. A linear correlation was found between the rate of application (added-C) and CO2-C evolved (r2: 0.997; P<0.001). A temperature coefficient (Q10) was used to assess the difference in biological activity at 5 degrees C intervals. Q10, which ranged from 1.0 to 2.7 (250h), was higher for the lower temperature range (Q10 (15-20 degrees C)>Q10 (20-25 degrees C)) and it was found to be related to the soil properties. Finally, the mineralization process was found to be highly dependent upon the different soil factors, although no simple linear correlation was found between mineralization and soil properties.


Subject(s)
Air Pollutants/metabolism , Carbon Dioxide/metabolism , Carbon/metabolism , Fertilizers , Meat , Minerals , Soil Microbiology , Agriculture/methods , Animals , Biological Products , Cattle , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...