Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612854

ABSTRACT

Mitomycin C (MMC)-induced genotoxic stress can be considered to be a novel trigger of endothelial dysfunction and atherosclerosis-a leading cause of cardiovascular morbidity and mortality worldwide. Given the increasing genotoxic load on the human organism, the decryption of the molecular pathways underlying genotoxic stress-induced endothelial dysfunction could improve our understanding of the role of genotoxic stress in atherogenesis. Here, we performed a proteomic profiling of human coronary artery endothelial cells (HCAECs) and human internal thoracic endothelial cells (HITAECs) in vitro that were exposed to MMC to identify the biochemical pathways and proteins underlying genotoxic stress-induced endothelial dysfunction. We denoted 198 and 71 unique, differentially expressed proteins (DEPs) in the MMC-treated HCAECs and HITAECs, respectively; only 4 DEPs were identified in both the HCAECs and HITAECs. In the MMC-treated HCAECs, 44.5% of the DEPs were upregulated and 55.5% of the DEPs were downregulated, while in HITAECs, these percentages were 72% and 28%, respectively. The denoted DEPs are involved in the processes of nucleotides and RNA metabolism, vesicle-mediated transport, post-translation protein modification, cell cycle control, the transport of small molecules, transcription and signal transduction. The obtained results could improve our understanding of the fundamental basis of atherogenesis and help in the justification of genotoxic stress as a risk factor for atherosclerosis.


Subject(s)
Atherosclerosis , Endothelial Cells , Humans , Mitomycin/pharmacology , Proteomics , DNA Damage
2.
Biomedicines ; 11(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-38001977

ABSTRACT

The aim of the study was to investigate the effect of carbohydrate metabolism disorders and insulin resistance indices on the immediate results of coronary artery bypass grafting (CABG). METHOD: Patients with coronary artery disease who underwent CABG (n = 383) were examined to determine glycemic status, free fatty acid and fasting insulin levels, and insulin resistance indices (Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), McAuley index, Quantitative Insulin Sensitivity Check Index (QUICKI), Revised-QUICKI). Patients were assessed for the development of perioperative complications and their length of stay in the hospital. Two groups were formed: group 1, patients with a combined endpoint (CEP, any complication and/or duration of hospital stay >10 days), n = 291; and group 2 (n = 92) without a CEP. Perioperative characteristics were analyzed, and predictors of hospital complications and prolonged hospital stay were evaluated. RESULTS: Patients in the CEP group were older, and there were more women among them (p = 0.003). Additionally, in this group, there were more patients with diabetes mellitus (37.5% vs 17.4%, p < 0.001), obesity (p < 0.001), and a higher percentage of combined operations (p = 0.007). In the group with a CEP, the levels of glucose (p = 0.031), glycated hemoglobin (p = 0.009), and free fatty acids (p = 0.007) and the Revised-QUICKI (p = 0.020) were higher than in the group without complications. In a regression analysis, the independent predictors of complications were combined operations (p = 0.016) and the predictors of a long hospital stay (>14 days) were female gender, the left atrium size, and diabetes mellitus (p < 0.001). The predictors of a composite endpoint included female gender, age, the left atrium size, and free fatty acid levels (p < 0.001). CONCLUSIONS: In the group with in-hospital complications after CABG, not only was the presence of diabetes mellitus more often detected, but there were also higher levels of free fatty acids and a higher Revised-QUICKI. Therefore, additional assessments of insulin resistance and free fatty acid levels are advisable in patients before CABG.

3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834480

ABSTRACT

Major adverse cardiovascular events occurring upon coronary artery bypass graft surgery are typically accompanied by endothelial dysfunction. Total arterial revascularisation, which employs both left and right internal thoracic arteries instead of the saphenous vein to create a bypass, is associated with better mid- and long-term outcomes. We suggested that molecular profiles of human coronary artery endothelial cells (HCAECs) and human internal mammary artery endothelial cells (HITAECs) are coherent in terms of transcriptomic and proteomic signatures, which were then investigated by RNA sequencing and ultra-high performance liquid chromatography-mass spectrometry, respectively. Both HCAECs and HITAECs overexpressed molecules responsible for the synthesis of extracellular matrix (ECM) components, basement membrane assembly, cell-ECM adhesion, organisation of intercellular junctions, and secretion of extracellular vesicles. HCAECs were characterised by higher enrichment with molecular signatures of basement membrane construction, collagen biosynthesis and folding, and formation of intercellular junctions, whilst HITAECs were notable for augmented pro-inflammatory signaling, intensive synthesis of proteins and nitrogen compounds, and enhanced ribosome biogenesis. Despite HCAECs and HITAECs showing a certain degree of molecular heterogeneity, no specific markers at the protein level have been identified. Coherence of differentially expressed molecular categories in HCAECs and HITAECs suggests synergistic interactions between these ECs in a bypass surgery scenario.


Subject(s)
Mammary Arteries , Humans , Coronary Vessels , Endothelial Cells , Multiomics , Proteomics
4.
Biomedicines ; 11(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37760823

ABSTRACT

Coronary artery disease (CAD) remains one of the leading causes of cardiovascular morbidity and mortality worldwide. The maintenance of endothelial homeostasis and vitamin D metabolism play an important role in CAD pathogenesis. This study aimed to determine the association of endothelial homeostasis and vitamin D metabolism gene polymorphism with CAD severity. A total of 224 low-risk patients (SYNTAX score ≤ 31) and 36 high-risk patients (SYNTAX score > 31) were recruited for this study. The serum level of E-, L- and P-selectins; endothelin; eNOS; 25OH; and 1.25-dihydroxy vitamin D was measured using an enzyme-linked immunosorbent assay (ELISA). Polymorphic variants in SELE, SELP, SELPLG, END1, NOS3, VDR and GC were analyzed using a polymerase chain reaction (PCR). We found no differences in the serum levels of the studied markers between high- and low-risk patients. Three polymorphic variants associated with CAD severity were discovered: END1 rs3087459, END1 rs5370 and GC rs2298849 in the log-additive model. Moreover, we discovered a significantly decreased serum level of 1.25-dihydroxy vitamin D in high-risk CAD patients with the A/A-A/G genotypes of the rs2228570 polymorphism of the VDR gene, the A/A genotype of the rs7041 polymorphism of the GC gene and the A/A genotype of the rs2298849 polymorphism of the GC gene.

5.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239889

ABSTRACT

The lack of suitable autologous grafts and the impossibility of using synthetic prostheses for small artery reconstruction make it necessary to develop alternative efficient vascular grafts. In this study, we fabricated an electrospun biodegradable poly(ε-caprolactone) (PCL) prosthesis and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) (PHBV/PCL) prosthesis loaded with iloprost (a prostacyclin analog) as an antithrombotic drug and cationic amphiphile with antibacterial activity. The prostheses were characterized in terms of their drug release, mechanical properties, and hemocompatibility. We then compared the long-term patency and remodeling features of PCL and PHBV/PCL prostheses in a sheep carotid artery interposition model. The research findings verified that the drug coating of both types of prostheses improved their hemocompatibility and tensile strength. The 6-month primary patency of the PCL/Ilo/A prostheses was 50%, while all PHBV/PCL/Ilo/A implants were occluded at the same time point. The PCL/Ilo/A prostheses were completely endothelialized, in contrast to the PHBV/PCL/Ilo/A conduits, which had no endothelial cells on the inner layer. The polymeric material of both prostheses degraded and was replaced with neotissue containing smooth-muscle cells; macrophages; proteins of the extracellular matrix such as type I, III, and IV collagens; and vasa vasorum. Thus, the biodegradable PCL/Ilo/A prostheses demonstrate better regenerative potential than PHBV/PCL-based implants and are more suitable for clinical use.


Subject(s)
Blood Vessel Prosthesis , Vascular Grafting , Animals , Sheep , Polymers , Polyesters , Prosthesis Implantation
6.
Immunol Invest ; 52(5): 583-597, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37216493

ABSTRACT

Systemic inflammatory response syndrome (SIRS) frequently accompanies early postoperative period after cardiac surgery and in some cases is complicated by multiple organ failure (MOF). Inherited variation in the innate immune response genes (e.g., TREM1) is among the major factors determining the development of SIRS and the risk of MOF. This research was aimed to study whether the polymorphisms within the TREM1 gene are associated with MOF after the coronary artery bypass graft (CABG) surgery. Here we enrolled 592 patients who underwent CABG surgery in the Research Institute for Complex Issues of Cardiovascular Diseases (Kemerovo, Russia) and documented 28 cases of MOF. Genotyping was performed by allele-specific PCR using TaqMan probes. In addition, we measured serum soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) using enzyme-linked immunosorbent assay. Five polymorphisms (rs1817537, rs2234246, rs3804277, rs7768162 andrs4711668) within the TREM1 gene were significantly associated with MOF. Patients with MOF had higher serum sTREM-1 as compared with those without MOF at both pre- and post-intervention stages. Serum sTREM-1 was associated with the rs1817537,rs2234246 and rs3804277 polymorphisms within the TREM1 gene. Minor alleles within the TREM1 gene define the level of serum sTREM-1 and are associated with MOF after CABG surgery.


Subject(s)
Cardiac Surgical Procedures , Membrane Glycoproteins , Humans , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , Multiple Organ Failure/genetics , Systemic Inflammatory Response Syndrome , Cardiac Surgical Procedures/adverse effects , Biomarkers
7.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047754

ABSTRACT

HMG-CoA reductase inhibitors (statins) are widely used in the therapy of atherosclerosis and have a number of pleiotropic effects, including DNA repair regulation. We studied the cytogenetic damage and the expression of DNA repair genes (DDB1, ERCC4, and ERCC5) in human coronary artery (HCAEC) and internal thoracic artery endothelial cells (HITAEC) in vitro exposed to mitomycin C (MMC) (positive control), MMC and atorvastatin (MMC+Atv), MMC followed by atorvastatin treatment (MMC/Atv) and 0.9% NaCl (negative control). MMC/Atv treated HCAEC were characterized by significantly decreased micronuclei (MN) frequency compared to the MMC+Atv group and increased nucleoplasmic bridges (NPBs) frequency compared to both MMC+Atv treated cells and positive control; DDB1, ERCC4, and ERCC5 genes were upregulated in MMC+Atv and MMC/Atv treated HCAEC in comparison with the positive control. MMC+Atv treated HITAEC were characterized by reduced MN frequency compared to positive control and decreased NPBs frequency in comparison with both the positive control and MMC/Atv group. Nuclear buds (NBUDs) frequency was significantly lower in MMC/Atv treated cells than in the positive control. The DDB1 gene was downregulated in the MMC+Atv group compared to the positive control, and the ERCC5 gene was upregulated in MMC/Atv group compared to both the positive control and MMC+Atv group. We propose that atorvastatin can modulate the DNA damage repair response in primary human endothelial cells exposed to MMC in a cell line- and incubation scheme-dependent manner that can be extremely important for understanding the fundamental aspects of pleoitropic action of atorvastatin and can also be used to correct the therapy of patients with atherosclerosis characterized by a high genotoxic load.


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Atorvastatin/pharmacology , Mitomycin/pharmacology , Endothelial Cells , DNA Repair , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , DNA Damage
8.
J Clin Med ; 12(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36836000

ABSTRACT

Congenital heart defect (CHD) surgeries are performed with cardiopulmonary bypass (CPB) and are complicated by several factors that affect the child's brain. However, to date, the number of studies on brain protection in cardiac surgery remains small. The aim of this study was to assess the impact of refraining from using packed red blood cells (PRBCs) in priming solutions in children with congenital defects (CHDs) who require surgical interventions using CPB to prevent brain injury in the postoperative period. MATERIAL AND METHODS: This study included 40 children, and the mean age was 14 (12-22.5) months and the mean weight was 8.8 (7.25-11) kg. All patients underwent CHD closure using CPB. The patients were divided into two groups depending on the use of PRBCs in the priming solution. Brain injury was assessed using three specific blood serum markers, namely S100 calcium-binding protein ß (S100ß), neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) before surgery, after the completion of CPB and 16 h after surgery (first, second and third control points). Markers of systemic inflammatory response were also analyzed, including interleukin-1, -6, -10 and tumor necrosis factor alpha (TNF-α). A clinical assessment of brain injury was carried out using a valid, rapid, observational tool for screening delirium in children of this age group, i.e., "Cornell Assessment of Pediatric Delirium". RESULTS: Factors of the intra- and postoperative period were analyzed, such as hemoglobin levels, oxygen delivery (cerebral tissue oxygenation, blood lactate level and venous oxygen saturation) and indicators of organ dysfunction (creatinine, urea, bilirubin levels, duration of CPB and length of stay in the ICU). Following the procedure, there were no significant differences between the groups and all indicators were within the reference values, thus demonstrating the safety of CHD closure without transfusion. Moreover, the highest level of specific markers of brain injury were noted immediately after the completion of CPB in both groups. The concentration of all three markers was significantly higher in the group with transfusion after the completion of CPB. Moreover, GFAP levels were higher in the transfusion group and 16 h after surgery. CONCLUSIONS: The results of the study show the safety and effectiveness of brain injury prevention strategies that consist of not conducting PRBC transfusion.

9.
J Cardiovasc Dev Dis ; 11(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38248875

ABSTRACT

Calciprotein particles (CPPs) are indispensable scavengers of excessive Ca2+ and PO43- ions in blood, being internalised and recycled by liver and spleen macrophages, monocytes, and endothelial cells (ECs). Here, we performed a pathway enrichment analysis of cellular compartment-specific proteomes in primary human coronary artery ECs (HCAEC) and human internal thoracic artery ECs (HITAEC) treated with primary (amorphous) or secondary (crystalline) CPPs (CPP-P and CPPs, respectively). Exposure to CPP-P and CPP-S induced notable upregulation of: (1) cytokine- and chemokine-mediated signaling, Ca2+-dependent events, and apoptosis in cytosolic and nuclear proteomes; (2) H+ and Ca2+ transmembrane transport, generation of reactive oxygen species, mitochondrial outer membrane permeabilisation, and intrinsic apoptosis in the mitochondrial proteome; (3) oxidative, calcium, and endoplasmic reticulum (ER) stress, unfolded protein binding, and apoptosis in the ER proteome. In contrast, transcription, post-transcriptional regulation, translation, cell cycle, and cell-cell adhesion pathways were underrepresented in cytosol and nuclear compartments, whilst biosynthesis of amino acids, mitochondrial translation, fatty acid oxidation, pyruvate dehydrogenase activity, and energy generation were downregulated in the mitochondrial proteome of CPP-treated ECs. Differentially expressed organelle-specific pathways were coherent in HCAEC and HITAEC and between ECs treated with CPP-P or CPP-S. Proteomic analysis of mitochondrial and nuclear lysates from CPP-treated ECs confirmed bioinformatic filtration findings.

10.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499077

ABSTRACT

Assess the level of mitochondrial DNA depending on the presence of multiple organ failure in patients after heart surgery. The study included 60 patients who underwent surgical treatment of valvular heart disease using cardiopulmonary bypass. Uncomplicated patients were included in the 1st group (n = 30), patients with complications and multiple organ failure (MOF) were included in the 2nd group (n = 30). Serum mtDNA levels were determined by quantitative real-time polymerase chain reaction with fluorescent dyes. Mitochondrial DNA gene expression did not differ between group before surgery. Immediately after the intervention, cytochrome B gene expression was higher in the group with MOF, and it remained high during entire follow-up period. A similar trend was observed in cytochrome oxidase gene expression. Increased NADH levels of gene expressions during the first postoperative day were noted in both groups, the expression showed tendency to increase on the third postoperative day. mtDNA gene expression in the "MOF present" group remained at a higher level compared with the group without complications. A positive correlation was reveled between the severity of MOF according to SOFA score and the level of mtDNA (r = 0.45; p = 0.028) for the end-point "First day". The ROC analysis showed that mtDNA circulating in plasma (AUC = 0.605) can be a predictor of MOF development. The level of mtDNA significantly increases in case of MOF, irrespective of its cause. (2) The expression of mtDNA genes correlates with the level of MOF severity on the SOFA score.


Subject(s)
Cardiac Surgical Procedures , Multiple Organ Failure , Humans , Multiple Organ Failure/etiology , Multiple Organ Failure/genetics , DNA, Mitochondrial/genetics , Cardiac Surgical Procedures/adverse effects , Mitochondria , Cardiopulmonary Bypass/adverse effects
11.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499266

ABSTRACT

Calciprotein particles (CPPs) represent an inherent mineral buffering system responsible for the scavenging of excessive Ca2+ and PO43- ions in order to prevent extraskeletal calcification, although contributing to the development of endothelial dysfunction during the circulation in the bloodstream. Here, we performed label-free proteomic profiling to identify the functional consequences of CPP internalisation by endothelial cells (ECs) and found molecular signatures of significant disturbances in mitochondrial and lysosomal physiology, including oxidative stress, vacuolar acidification, accelerated proteolysis, Ca2+ cytosolic elevation, and mitochondrial outer membrane permeabilisation. Incubation of intact ECs with conditioned medium from CPP-treated ECs caused their pro-inflammatory activation manifested by vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1) upregulation and elevated release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1/ C-C motif ligand 2 (MCP-1/CCL2). Among the blood cells, monocytes were exclusively responsible for CPP internalisation. As compared to the co-incubation of donor blood with CPPs in the flow culture system, intravenous administration of CPPs to Wistar rats caused a considerably higher production of chemokines, indicating the major role of monocytes in CPP-triggered inflammation. Upregulation of sICAM-1 and IL-8 also suggested a notable contribution of endothelial dysfunction to systemic inflammatory response after CPP injections. Collectively, our results demonstrate the pathophysiological significance of CPPs and highlight the need for the development of anti-CPP therapies.


Subject(s)
Endothelial Cells , Interleukin-8 , Animals , Rats , Interleukin-8/metabolism , Proteomics , Rats, Wistar , Inflammation/metabolism , Monocytes/metabolism
12.
Biomedicines ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36140167

ABSTRACT

Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide. Endothelial disfunction underlying the atherogenesis can be triggered by genotoxic stress in endothelial cells. In the presented research whole transcriptome sequencing (RNA-seq) of human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells in vitro exposed to 500 ng/mL mitomycin C (treatment group) or 0.9% NaCl (control group) was performed. Resulting to bioinformatic analysis, 56 upregulated differentially expressed genes (DEGs) and 6 downregulated DEGs with absolute fold change ≥ 2 and FDR p-value < 0.05 were selected in HCAEC exposed to mitomycin C compared to the control group; in HITAEC only one upregulated DEG was found. According to Gene Ontology enrichment analysis, DEGs in HCAEC were classified into 25 functional groups of biological processes, while in HITAEC we found no statistically significant (FDR p-value < 0.05) groups. The four largest groups containing more than 50% DEGs ("signal transduction", "response to stimulus", "biological regulation", and "regulation of biological process") were identified. Finally, candidate DEGs and pathways underlying the genotoxic stress induced endothelial disfunction have been discovered that could improve our understanding of fundamental basis of atherogenesis and help to justification of genotoxic stress as a novel risk factor for atherosclerosis.

13.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743174

ABSTRACT

A 72-year-old female patient with mixed rheumatic mitral valve disease and persistent atrial fibrillation underwent mitral valve replacement and suffered from a combined thrombosis of the bioprosthetic valve and the left atrium as soon as 2 days post operation. The patient immediately underwent repeated valve replacement and left atrial thrombectomy. Yet, four days later the patient died due to the recurrent prosthetic valve and left atrial thrombosis which both resulted in an extremely low cardiac output. In this patient's case, the thrombosis was notable for the resistance to anticoagulant therapy as well as for aggressive neutrophil infiltration and release of neutrophil extracellular traps (NETs) within the clot, as demonstrated by immunostaining. The reasons behind these phenomena remained unclear, as no signs of sepsis or contamination of the BHV were documented, although the patient was diagnosed with inherited thrombophilia that could impede the fibrinolysis. The described case highlights the hazard of immunothrombosis upon valve replacement and elucidates its mechanisms in this surgical setting.


Subject(s)
Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Thrombosis , Aged , Female , Heart Atria , Heart Valve Prosthesis/adverse effects , Heart Valve Prosthesis Implantation/adverse effects , Humans , Mitral Valve/surgery , Thromboinflammation , Thrombosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...