Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612854

ABSTRACT

Mitomycin C (MMC)-induced genotoxic stress can be considered to be a novel trigger of endothelial dysfunction and atherosclerosis-a leading cause of cardiovascular morbidity and mortality worldwide. Given the increasing genotoxic load on the human organism, the decryption of the molecular pathways underlying genotoxic stress-induced endothelial dysfunction could improve our understanding of the role of genotoxic stress in atherogenesis. Here, we performed a proteomic profiling of human coronary artery endothelial cells (HCAECs) and human internal thoracic endothelial cells (HITAECs) in vitro that were exposed to MMC to identify the biochemical pathways and proteins underlying genotoxic stress-induced endothelial dysfunction. We denoted 198 and 71 unique, differentially expressed proteins (DEPs) in the MMC-treated HCAECs and HITAECs, respectively; only 4 DEPs were identified in both the HCAECs and HITAECs. In the MMC-treated HCAECs, 44.5% of the DEPs were upregulated and 55.5% of the DEPs were downregulated, while in HITAECs, these percentages were 72% and 28%, respectively. The denoted DEPs are involved in the processes of nucleotides and RNA metabolism, vesicle-mediated transport, post-translation protein modification, cell cycle control, the transport of small molecules, transcription and signal transduction. The obtained results could improve our understanding of the fundamental basis of atherogenesis and help in the justification of genotoxic stress as a risk factor for atherosclerosis.


Subject(s)
Atherosclerosis , Endothelial Cells , Humans , Mitomycin/pharmacology , Proteomics , DNA Damage
2.
Biomedicines ; 11(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37760823

ABSTRACT

Coronary artery disease (CAD) remains one of the leading causes of cardiovascular morbidity and mortality worldwide. The maintenance of endothelial homeostasis and vitamin D metabolism play an important role in CAD pathogenesis. This study aimed to determine the association of endothelial homeostasis and vitamin D metabolism gene polymorphism with CAD severity. A total of 224 low-risk patients (SYNTAX score ≤ 31) and 36 high-risk patients (SYNTAX score > 31) were recruited for this study. The serum level of E-, L- and P-selectins; endothelin; eNOS; 25OH; and 1.25-dihydroxy vitamin D was measured using an enzyme-linked immunosorbent assay (ELISA). Polymorphic variants in SELE, SELP, SELPLG, END1, NOS3, VDR and GC were analyzed using a polymerase chain reaction (PCR). We found no differences in the serum levels of the studied markers between high- and low-risk patients. Three polymorphic variants associated with CAD severity were discovered: END1 rs3087459, END1 rs5370 and GC rs2298849 in the log-additive model. Moreover, we discovered a significantly decreased serum level of 1.25-dihydroxy vitamin D in high-risk CAD patients with the A/A-A/G genotypes of the rs2228570 polymorphism of the VDR gene, the A/A genotype of the rs7041 polymorphism of the GC gene and the A/A genotype of the rs2298849 polymorphism of the GC gene.

3.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37645762

ABSTRACT

The extracellular matrix (ECM) supports blood vessel architecture and functionality and undergoes active remodelling during vascular repair and atherogenesis. Vascular smooth muscle cells (VSMCs) are essential for vessel repair and, via their secretome, are able to invade from the vessel media into the intima to mediate ECM remodelling. Accumulation of fibronectin (FN) is a hallmark of early vascular repair and atherosclerosis and here we show that FN stimulates VSMCs to secrete small extracellular vesicles (sEVs) by activating the ß1 integrin/FAK/Src pathway as well as Arp2/3-dependent branching of the actin cytoskeleton. Spatially, sEV were secreted via filopodia-like cellular protrusions at the leading edge of migrating cells. We found that sEVs are trapped by the ECM in vitro and colocalise with FN in symptomatic atherosclerotic plaques in vivo. Functionally, ECM-trapped sEVs induced the formation of focal adhesions (FA) with enhanced pulling forces at the cellular periphery. Proteomic and GO pathway analysis revealed that VSMC-derived sEVs display a cell adhesion signature and are specifically enriched with collagen VI. In vitro assays identified collagen VI as playing the key role in cell adhesion and invasion. Taken together our data suggests that the accumulation of FN is a key early event in vessel repair acting to promote secretion of collage VI enriched sEVs by VSMCs. These sEVs stimulate migration and invasion by triggering peripheral focal adhesion formation and actomyosin contraction to exert sufficient traction forces to enable VSMC movement within the complex vascular ECM network.

4.
Immunol Invest ; 52(5): 583-597, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37216493

ABSTRACT

Systemic inflammatory response syndrome (SIRS) frequently accompanies early postoperative period after cardiac surgery and in some cases is complicated by multiple organ failure (MOF). Inherited variation in the innate immune response genes (e.g., TREM1) is among the major factors determining the development of SIRS and the risk of MOF. This research was aimed to study whether the polymorphisms within the TREM1 gene are associated with MOF after the coronary artery bypass graft (CABG) surgery. Here we enrolled 592 patients who underwent CABG surgery in the Research Institute for Complex Issues of Cardiovascular Diseases (Kemerovo, Russia) and documented 28 cases of MOF. Genotyping was performed by allele-specific PCR using TaqMan probes. In addition, we measured serum soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) using enzyme-linked immunosorbent assay. Five polymorphisms (rs1817537, rs2234246, rs3804277, rs7768162 andrs4711668) within the TREM1 gene were significantly associated with MOF. Patients with MOF had higher serum sTREM-1 as compared with those without MOF at both pre- and post-intervention stages. Serum sTREM-1 was associated with the rs1817537,rs2234246 and rs3804277 polymorphisms within the TREM1 gene. Minor alleles within the TREM1 gene define the level of serum sTREM-1 and are associated with MOF after CABG surgery.


Subject(s)
Cardiac Surgical Procedures , Membrane Glycoproteins , Humans , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , Multiple Organ Failure/genetics , Systemic Inflammatory Response Syndrome , Cardiac Surgical Procedures/adverse effects , Biomarkers
5.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047754

ABSTRACT

HMG-CoA reductase inhibitors (statins) are widely used in the therapy of atherosclerosis and have a number of pleiotropic effects, including DNA repair regulation. We studied the cytogenetic damage and the expression of DNA repair genes (DDB1, ERCC4, and ERCC5) in human coronary artery (HCAEC) and internal thoracic artery endothelial cells (HITAEC) in vitro exposed to mitomycin C (MMC) (positive control), MMC and atorvastatin (MMC+Atv), MMC followed by atorvastatin treatment (MMC/Atv) and 0.9% NaCl (negative control). MMC/Atv treated HCAEC were characterized by significantly decreased micronuclei (MN) frequency compared to the MMC+Atv group and increased nucleoplasmic bridges (NPBs) frequency compared to both MMC+Atv treated cells and positive control; DDB1, ERCC4, and ERCC5 genes were upregulated in MMC+Atv and MMC/Atv treated HCAEC in comparison with the positive control. MMC+Atv treated HITAEC were characterized by reduced MN frequency compared to positive control and decreased NPBs frequency in comparison with both the positive control and MMC/Atv group. Nuclear buds (NBUDs) frequency was significantly lower in MMC/Atv treated cells than in the positive control. The DDB1 gene was downregulated in the MMC+Atv group compared to the positive control, and the ERCC5 gene was upregulated in MMC/Atv group compared to both the positive control and MMC+Atv group. We propose that atorvastatin can modulate the DNA damage repair response in primary human endothelial cells exposed to MMC in a cell line- and incubation scheme-dependent manner that can be extremely important for understanding the fundamental aspects of pleoitropic action of atorvastatin and can also be used to correct the therapy of patients with atherosclerosis characterized by a high genotoxic load.


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Atorvastatin/pharmacology , Mitomycin/pharmacology , Endothelial Cells , DNA Repair , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , DNA Damage
6.
J Cardiovasc Dev Dis ; 11(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38248875

ABSTRACT

Calciprotein particles (CPPs) are indispensable scavengers of excessive Ca2+ and PO43- ions in blood, being internalised and recycled by liver and spleen macrophages, monocytes, and endothelial cells (ECs). Here, we performed a pathway enrichment analysis of cellular compartment-specific proteomes in primary human coronary artery ECs (HCAEC) and human internal thoracic artery ECs (HITAEC) treated with primary (amorphous) or secondary (crystalline) CPPs (CPP-P and CPPs, respectively). Exposure to CPP-P and CPP-S induced notable upregulation of: (1) cytokine- and chemokine-mediated signaling, Ca2+-dependent events, and apoptosis in cytosolic and nuclear proteomes; (2) H+ and Ca2+ transmembrane transport, generation of reactive oxygen species, mitochondrial outer membrane permeabilisation, and intrinsic apoptosis in the mitochondrial proteome; (3) oxidative, calcium, and endoplasmic reticulum (ER) stress, unfolded protein binding, and apoptosis in the ER proteome. In contrast, transcription, post-transcriptional regulation, translation, cell cycle, and cell-cell adhesion pathways were underrepresented in cytosol and nuclear compartments, whilst biosynthesis of amino acids, mitochondrial translation, fatty acid oxidation, pyruvate dehydrogenase activity, and energy generation were downregulated in the mitochondrial proteome of CPP-treated ECs. Differentially expressed organelle-specific pathways were coherent in HCAEC and HITAEC and between ECs treated with CPP-P or CPP-S. Proteomic analysis of mitochondrial and nuclear lysates from CPP-treated ECs confirmed bioinformatic filtration findings.

7.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499266

ABSTRACT

Calciprotein particles (CPPs) represent an inherent mineral buffering system responsible for the scavenging of excessive Ca2+ and PO43- ions in order to prevent extraskeletal calcification, although contributing to the development of endothelial dysfunction during the circulation in the bloodstream. Here, we performed label-free proteomic profiling to identify the functional consequences of CPP internalisation by endothelial cells (ECs) and found molecular signatures of significant disturbances in mitochondrial and lysosomal physiology, including oxidative stress, vacuolar acidification, accelerated proteolysis, Ca2+ cytosolic elevation, and mitochondrial outer membrane permeabilisation. Incubation of intact ECs with conditioned medium from CPP-treated ECs caused their pro-inflammatory activation manifested by vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1) upregulation and elevated release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1/ C-C motif ligand 2 (MCP-1/CCL2). Among the blood cells, monocytes were exclusively responsible for CPP internalisation. As compared to the co-incubation of donor blood with CPPs in the flow culture system, intravenous administration of CPPs to Wistar rats caused a considerably higher production of chemokines, indicating the major role of monocytes in CPP-triggered inflammation. Upregulation of sICAM-1 and IL-8 also suggested a notable contribution of endothelial dysfunction to systemic inflammatory response after CPP injections. Collectively, our results demonstrate the pathophysiological significance of CPPs and highlight the need for the development of anti-CPP therapies.


Subject(s)
Endothelial Cells , Interleukin-8 , Animals , Rats , Interleukin-8/metabolism , Proteomics , Rats, Wistar , Inflammation/metabolism , Monocytes/metabolism
8.
Front Endocrinol (Lausanne) ; 13: 991902, 2022.
Article in English | MEDLINE | ID: mdl-36157437

ABSTRACT

In our study we investigated the relationships between adipocytokines in adipose tissue (AT) and cardiovascular disease (CVD) risk factors; (2) Methods: fat tissue biopsies were obtained from 134 patients with stable CAD undergoing coronary artery bypass grafting and 120 patients undergoing aortic or mitral valve replacement. Adipocytes were isolated from subcutaneous (SAT), epicardial (EAT), and perivascular AT (PVAT) samples, and cultured for 24 h, after which gene expression of adipocytokines in the culture medium was determined; (3) Results: men showed reduced ADIPOQ expression in EAT and PVAT, LEP expression in PVAT, and LEPR expression in SAT and PVAT compared to women. Men also exhibited higher SAT and lower PVAT IL6 than women. Meanwhile, dyslipidemia associated with decreased ADIPOQ expression in EAT and PVAT, LEPR in EAT, and IL6 in PVAT. Arterial hypertension (AH) associated with low EAT and PVAT ADIPOQ, and high EAT LEP, SAT, as well as PVAT LEPR, and IL6 in SAT and EAT. ADIPOQ expression decreased with increased AH duration over 20 years against an increased LEP background in ATs. Smoking increased ADIPOQ expression in all ATs and increased LEP in SAT and EAT, however, decreased LEPR in PVAT. Patients 51-59 years old exhibited the highest EAT and PVAT LEP, IL-6, and LEPR expression compared to other age groups; (4) Conclusions: decreased EAT ADIPOQ expression against an increased pro-inflammatory IL6 background may increase atherogenesis and contribute to CAD progression in combination with risk factors including male sex, dyslipidemia, and AH.


Subject(s)
Adipokines , Vascular Diseases , Adipokines/metabolism , Adipose Tissue/metabolism , Female , Humans , Interleukin-6/genetics , Male , Middle Aged , Pericardium/metabolism , Risk Factors , Vascular Diseases/metabolism
9.
Biomedicines ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36140167

ABSTRACT

Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide. Endothelial disfunction underlying the atherogenesis can be triggered by genotoxic stress in endothelial cells. In the presented research whole transcriptome sequencing (RNA-seq) of human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells in vitro exposed to 500 ng/mL mitomycin C (treatment group) or 0.9% NaCl (control group) was performed. Resulting to bioinformatic analysis, 56 upregulated differentially expressed genes (DEGs) and 6 downregulated DEGs with absolute fold change ≥ 2 and FDR p-value < 0.05 were selected in HCAEC exposed to mitomycin C compared to the control group; in HITAEC only one upregulated DEG was found. According to Gene Ontology enrichment analysis, DEGs in HCAEC were classified into 25 functional groups of biological processes, while in HITAEC we found no statistically significant (FDR p-value < 0.05) groups. The four largest groups containing more than 50% DEGs ("signal transduction", "response to stimulus", "biological regulation", and "regulation of biological process") were identified. Finally, candidate DEGs and pathways underlying the genotoxic stress induced endothelial disfunction have been discovered that could improve our understanding of fundamental basis of atherogenesis and help to justification of genotoxic stress as a novel risk factor for atherosclerosis.

10.
J Pers Med ; 12(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35207618

ABSTRACT

Adipose tissue (AT) is an endocrine and paracrine organ that synthesizes biologically active adipocytokines, which affect inflammation, fibrosis, and atherogenesis. Epicardial and perivascular fat depots are of great interest to researchers, owing to their potential effects on the myocardium and blood vessels. The aim of the study was to assess the expression and secretion of adipocytokine genes in the AT of patients with coronary artery disease (CAD) and patients with aortic or mitral valve replacement. This study included 84 patients with CAD and 50 patients with aortic or mitral valve replacement. Adipocytes were isolated from subcutaneous, epicardial (EAT), and perivascular AT (PVAT), and were cultured for 24 h. EAT exhibited the lowest level of adiponectin gene expression and secretion, regardless of nosology, and high expression levels of the leptin gene and interleukin-6 (IL-6). However, EAT adipocytes in patients with CAD were characterized by more pronounced changes in comparison with the group with heart defects. High leptin and IL-6 levels resulted in increased pro-inflammatory activity, as observed in both EAT and PVAT adipocytes, especially in individuals with CAD. Therefore, our results revealed the pathogenetic significance of alterations in the adipokine and cytokine status of adipocytes of EAT and PVAT in patients with CAD.

11.
J Pers Med ; 12(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35207726

ABSTRACT

More than two billion people around the world are overweight or obese. Even in apparently healthy people, obesity has a potent effect on their quality of life. Experimental data indicate the role of infectious agents in systemic inflammation, revealing a correlation between the dietary habits of people with obesity and the level of systemic inflammation mediators, serum lipid concentration, and hormonal and immune status. This study aimed to determine the association of immune response and lipid metabolism gene polymorphisms with the risk of obesity. This study included 560 Caucasian participants living in Western Siberia (Russian Federation). A total of 52 polymorphic sites in 20 genes were analyzed using the 5' TaqMan nuclease assay. Four risk-associated polymorphic variants were discovered-two variants in immune response genes (IL6R rs2229238, OR = 1.92, 95% CI = 1.36-2.7, p = 0.0002 in the dominant model; IL18 rs1946518, OR = 1.45, 95% CI = 1.03-2.04, p = 0.033 in the over-dominant model) and two variants in lipid metabolism genes (LPA rs10455872, OR = 1.86, 95% CI = 1.07-3.21, p = 0.026 in the log-additive model; LEPR rs1137100, OR = 2.88, 95% CI = 1.52-5.46, p = 0.001 in the recessive model). Thus, polymorphisms in immune response and lipid metabolism genes are potentially associated with the modification of obesity risk in the Caucasian population.

12.
Arch Physiol Biochem ; 128(1): 261-269, 2022 Feb.
Article in English | MEDLINE | ID: mdl-31595792

ABSTRACT

To compare DPP4, LCN2, NAMPT, ITLN1, APLN mRNA levels in adipocytes isolated from the biopsies of subcutaneous, epicardial and perivascular fat obtained from 25 patients with coronary artery disease. Gene expression signature was determined by RT-qPCR with hydrolysis probes. We found DPP4 and APLN mRNA was higher expressed only in adipocytes isolated from epicardial adipose tissue compared to the subcutaneous fat. The ITLN1 gene was overexpressed in epicardial adipose tissue compared to both subcutaneous and perivascular tissues. APLN mRNA expression was positively correlated with total and LDL cholesterol plasma level, and DPP4 mRNA expression - with VLDL cholesterol concentration. Thus, adipocytes isolated from different adipose depots are characterised by differential gene expression of adipokines. Epicardial adipose tissue is of particular interest in the context of its function, molecular and genetic mechanisms of regulation of the cardiovascular system and as a therapeutic target for correction of adipose tissue-induced effects on health.


Subject(s)
Adipokines , Coronary Artery Disease , Adipocytes , Adipose Tissue , Coronary Artery Disease/genetics , Gene Expression , Humans
13.
Immunol Invest ; 51(4): 802-816, 2022 May.
Article in English | MEDLINE | ID: mdl-33522333

ABSTRACT

BACKGROUND: Atherogenesis is mainly determined by endothelial dysfunction, lipid metabolism disorders and inflammation. The atherogenesis-related inflammatory process is a complex interaction between serum blood lipoproteins, inflammatory cells, endothelial and smooth muscle cells and extracellular matrix; the role of chronic inflammation in atherogenesis was proposed. MATERIAL AND METHODS: A pathogenetic role of polymorphism in NF-kB pathway genes in coronary artery disease and associated pathological conditions has been suggested in a case-control retrospective study. 260 coronary artery disease patients permanently living in a large industrial region of Russian Federation (Kemerovo region) were recruited in the study. We examined nine single nucleotide polymorphisms in IL18, IL18R1 and IL18RAP genes by polymerize chain reaction; and serum blood level of IL18 by enzyme-linked immunosorbent assay. RESULTS: Polymorphic variants rs13015714 (IL18R1) and rs917997 (IL18RAP) are associated with the risk of myocardial infarction and high serum levels of IL18. Minor alleles of rs13015714 and rs917997 sites are associated with high risk of developing multifocal atherosclerosis and arterial hypertension in patients with stable coronary artery disease after myocardial infarction. CONCLUSIONS: Thus, polymorphism in the genes of IL18 receptor is determine the IL18 contents and important in the development of coronary atherosclerosis, associated pathological conditions and the risk of acute coronary events; prospective monitoring of patients with early clinical signs of adverse events is required to confirm the role of IL18, IL18R1, and IL18RAP genes polymorphism in atherogenesis.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Interleukin-18 Receptor alpha Subunit , Interleukin-18 Receptor beta Subunit , Interleukin-18 , Myocardial Infarction , Coronary Artery Disease/genetics , Humans , Inflammation , Interleukin-18/blood , Interleukin-18/genetics , Interleukin-18 Receptor alpha Subunit/genetics , Interleukin-18 Receptor beta Subunit/genetics , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide , Retrospective Studies , Russia
14.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830334

ABSTRACT

An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.


Subject(s)
Angina Pectoris/physiopathology , Brain Ischemia/physiopathology , Calcium Chloride/blood , Coronary Artery Disease/physiopathology , Endothelial Cells/pathology , Myocardial Infarction/physiopathology , Phosphates/blood , Angina Pectoris/blood , Angina Pectoris/genetics , Animals , Aorta/metabolism , Aorta/pathology , Brain Ischemia/blood , Brain Ischemia/genetics , Calcium Chloride/chemistry , Case-Control Studies , Cell Death , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Flocculation , Gene Expression Regulation , Humans , Inflammation , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Lysosomes/metabolism , Lysosomes/pathology , Male , Myocardial Infarction/blood , Myocardial Infarction/genetics , Phosphates/chemistry , Primary Cell Culture , Rats , Rats, Wistar , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Tunica Intima/metabolism , Tunica Intima/pathology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
15.
Polymers (Basel) ; 13(16)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34451177

ABSTRACT

Tissue-engineered vascular graft for the reconstruction of small arteries is still an unmet clinical need, despite the fact that a number of promising prototypes have entered preclinical development. Here we test Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Poly(ε-caprolactone) 4-mm-diameter vascular grafts equipped with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and stromal cell-derived factor 1α (SDF-1α) and surface coated with heparin and iloprost (PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo, n = 8) in a sheep carotid artery interposition model, using biostable vascular prostheses of expanded poly(tetrafluoroethylene) (ePTFE, n = 5) as a control. Primary patency of PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts was 62.5% (5/8) at 24 h postimplantation and 50% (4/8) at 18 months postimplantation, while all (5/5) ePTFE conduits were occluded within the 24 h after the surgery. At 18 months postimplantation, PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts were completely resorbed and replaced by the vascular tissue. Regenerated arteries displayed a hierarchical three-layer structure similar to the native blood vessels, being fully endothelialised, highly vascularised and populated by vascular smooth muscle cells and macrophages. The most (4/5, 80%) of the regenerated arteries were free of calcifications but suffered from the aneurysmatic dilation. Therefore, biodegradable PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts showed better short- and long-term results than bio-stable ePTFE analogues, although these scaffolds must be reinforced for the efficient prevention of aneurysms.

16.
PLoS One ; 16(3): e0248716, 2021.
Article in English | MEDLINE | ID: mdl-33735200

ABSTRACT

In coronary artery disease (CAD) the adipocytokine content in the heart fat depot is altered, but it has not been established whether these changes are associated with the degree of atherosclerotic damage to the coronary artery (CA). Were examined 84 patients with CAD, and according to the degree of atherosclerotic state based on the SYNTAX Score scale, were divided: 39 moderate (≤22 points), 20 severe (23-31 points) and 25 extremely severe (≥32 points). Biopsies of subcutaneous (SAT), epicardial (EAT) and perivascular adipose tissue (PVAT) were obtained during elective coronary artery bypass grafting (CABG). The expression of adipocytokine was determined using real-time PCR. The concentration of the studied adipocytokines in adipocyte culture medium was measured by ELISA. Statistical analysis was performed using logistic regression analysis. In the adipocytes of the cardiac depot of patients with CAD, an increase in the expression and secretion of leptin and IL-6 and a decrease in adiponectin, with a maximum manifestation in severe and extremely severe CA lesions, was observed. EAT adipocytes were characterized by minimal expression of the adiponectin gene maximal gene expression leptin and IL-6 compared to SAT and PVAT adipocytes.


Subject(s)
Adiponectin/metabolism , Atherosclerosis/diagnosis , Coronary Artery Disease/immunology , Pericardium/pathology , Adiponectin/analysis , Adipose Tissue , Aged , Atherosclerosis/complications , Atherosclerosis/immunology , Atherosclerosis/pathology , Biopsy , Coronary Angiography , Coronary Artery Disease/diagnosis , Coronary Artery Disease/pathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Female , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
17.
Article in English | MEDLINE | ID: mdl-33198933

ABSTRACT

Mitomycin C (MMC) is an alkylating chemotherapy drug that causes DNA crosslinking resulting in transcription arrest and apoptosis. DNA crosslinking is a critical damage to DNA that can be caused not only by MMC and other antitumor drugs, but also by various environmental and anthropogenic endo- and exogenous agents. Mammalian cells exposed to alkylating mutagens are characterized by severe genotoxic stress. Somatic mutations and genotoxic stress may lead to endothelial dysfunction, which is the initial stage of atherosclerosis, a leading cause of morbidity and mortality worldwide. Here we studied DNA damage, protein secretion and gene expression of IL6 and IL8 in primary human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC) in vitro exposed to 500 ng/mL MMC. We observed an increase in levels of cytogenetic damage (micronuclei, nucleoplasmic bridges and nuclear buds) in MMC-treated cells compared to control cells. After 6 h incubation with MMC, both HCAEC and HITAEC displayed a decrease in IL8 concentration and the mRNA level of IL6 and IL8 compared to control cells. Removal of MMC from cultures after 6 h followed by 24 h incubation of cells in complete growth media led to a sharp increase in secretion and gene expression of the studied cytokines in both HCAEC and HITAEC. Moreover, HCAEC were more susceptible to mutagenic exposure compared to HITAEC. These findings suggest that the MMC-induced genotoxic stress in endothelial cells derived from different arteries is associated with differential secretion and gene expression of proinflammatory cytokines IL6 and IL8.


Subject(s)
Cytokines/metabolism , DNA Damage , Endothelial Cells/drug effects , Mitomycin/pharmacology , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Cytokines/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression/drug effects , Humans , Inflammation Mediators/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism
18.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233811

ABSTRACT

Calciprotein particles (CPPs), which increasingly arise in the circulation during the disorders of mineral homeostasis, represent a double-edged sword protecting the human organism from extraskeletal calcification but potentially causing endothelial dysfunction. Existing models, however, failed to demonstrate the detrimental action of CPPs on endothelial cells (ECs) under flow. Here, we applied a flow culture system, where human arterial ECs were co-incubated with CPPs for 4 h, and a normolipidemic and normotensive rat model (10 daily intravenous injections of CPPs) to simulate the scenario occurring in vivo in the absence of confounding cardiovascular risk factors. Pathogenic effects of CPPs were investigated by RT-qPCR and Western blotting profiling of the endothelial lysate. CPPs were internalised within 1 h of circulation, inducing adhesion of peripheral blood mononuclear cells to ECs. Molecular profiling revealed that CPPs stimulated the expression of pro-inflammatory cell adhesion molecules VCAM1 and ICAM1 and upregulated transcription factors of endothelial-to-mesenchymal transition (Snail, Slug and Twist1). Furthermore, exposure to CPPs reduced the production of atheroprotective transcription factors KLF2 and KLF4 and led to YAP1 hypophosphorylation, potentially disturbing the mechanisms responsible for the proper endothelial mechanotransduction. Taken together, our results suggest the ability of CPPs to initiate endothelial dysfunction at physiological flow conditions.


Subject(s)
Calcifying Nanoparticles/adverse effects , Endothelial Cells/pathology , Mechanotransduction, Cellular , Animals , Calcium/chemistry , Cells, Cultured , Humans , Kruppel-Like Factor 4 , Male , Rats , Rats, Wistar , Stress, Mechanical , Vascular Diseases/metabolism
19.
Int J Mol Sci ; 21(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126651

ABSTRACT

Although saphenous veins (SVs) are commonly used as conduits for coronary artery bypass grafting (CABG), internal thoracic artery (ITA) grafts have significantly higher long-term patency. As SVs and ITA endothelial cells (ECs) have a considerable level of heterogeneity, we suggested that synergistic paracrine interactions between CA and ITA ECs (HCAECs and HITAECs, respectively) may explain the increased resistance of ITA grafts and adjacent CAs to atherosclerosis and restenosis. In this study, we measured the gene and protein expression of the molecules responsible for endothelial homeostasis, pro-inflammatory response, and endothelial-to-mesenchymal transition in HCAECs co-cultured with either HITAECs or SV ECs (HSaVECs) for an ascending duration. Upon the co-culture, HCAECs and HITAECs showed augmented expression of endothelial nitric oxide synthase (eNOS) and reduced expression of endothelial-to-mesenchymal transition transcription factors Snail and Slug when compared to the HCAEC-HSaVEC model. HCAECs co-cultured with HITAECs demonstrated an upregulation of HES1, a master regulator of arterial specification, of which the expression was also exclusively induced in HSaVECs co-cultured with HCAECs, suggestive of their arterialisation. In addition, co-culture of HCAECs and HITAECs promoted the release of pro-angiogenic molecules. To conclude, co-culture of HCAECs and HITAECs results in reciprocal and beneficial paracrine interactions that might contribute to the better performance of ITA grafts upon CABG.


Subject(s)
Coronary Vessels/cytology , Endothelium, Vascular/cytology , Mammary Arteries/cytology , Paracrine Communication , Vascular Patency , Cells, Cultured , Coculture Techniques , Coronary Artery Bypass , Coronary Vessels/metabolism , Endothelium, Vascular/metabolism , Humans , Mammary Arteries/metabolism
20.
Int J Mol Sci ; 20(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731607

ABSTRACT

Calcium phosphate bions (CPBs) are formed under blood supersaturation with calcium and phosphate owing to the mineral chaperone fetuin-A and representing mineralo-organic particles consisting of bioapatite and multiple serum proteins. While protecting the arteries from a rapid medial calcification, CPBs cause endothelial injury and aggravate intimal hyperplasia in balloon-injured rat aortas. Here, we asked whether CPBs induce intimal hyperplasia in intact rat arteries in the absence of cardiovascular risk factors. Normolipidemic Wistar rats were subjected to regular (once/thrice per week over 5 weeks) tail vein injections of either spherical (CPB-S) or needle-shaped CPBs (CPB-N), magnesium phosphate bions (MPBs), or physiological saline (n = 5 per group). Neointima was revealed in 3/10 and 4/10 rats which received CPB-S or CPB-N, respectively, regardless of the injection regimen or blood flow pattern in the aortic segments. In contrast, none of the rats treated with MPBs or physiological saline had intimal hyperplasia. The animals also did not display signs of liver or spleen injury as well as extraskeletal calcium deposits. Serum alanine/aspartate transaminases, interleukin-1ß, MCP-1/CCL2, C-reactive protein, and ceruloplasmin levels did not differ among the groups. Hence, CPBs may provoke intimal hyperplasia via direct endothelial injury regardless of their shape or type of blood flow.


Subject(s)
Aorta/drug effects , Calcium Phosphates/pharmacology , Cardiovascular Diseases/blood , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Durapatite/chemistry , Male , Neointima/blood , Rats , Rats, Wistar , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...