Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 64(8): 100405, 2023 08.
Article in English | MEDLINE | ID: mdl-37352974

ABSTRACT

Alpha/beta hydrolase domain-containing protein 4 (ABHD4) catalyzes the deacylation of N-acyl phosphatidyl-ethanolamine (NAPE) and lyso-NAPE to produce glycerophospho-N-acyl ethanolamine (GP-NAE). Through a variety of metabolic enzymes, NAPE, lyso-NAPE, and GP-NAE are ultimately converted into NAE, a group of bioactive lipids that control many physiological processes including inflammation, cognition, food intake, and lipolysis (i.e., oleoylethanolamide or OEA). In a diet-induced obese mouse model, adipose tissue Abhd4 gene expression positively correlated with adiposity. However, it is unknown whether Abhd4 is a causal or a reactive gene to obesity. To fill this knowledge gap, we generated an Abhd4 knockout (KO) 3T3-L1 pre-adipocyte. During adipogenic stimulation, Abhd4 KO pre-adipocytes had increased adipogenesis and lipid accumulation, suggesting Abhd4 is responding to (a reactive gene), not contributing to (not a causal gene), adiposity, and may serve as a mechanism for protecting against obesity. However, we did not observe any differences in adiposity and metabolic outcomes between whole-body Abhd4 KO or adipocyte-specific Abhd4 KO mice and their littermate control mice (both male and female) on chow or a high-fat diet. This might be because we found that deletion of Abhd4 did not affect NAE such as OEA production, even though Abhd4 was highly expressed in adipose tissue and correlated with fasting adipose OEA levels and lipolysis. These data suggest that ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice despite nutrient overload, possibly due to compensation from other NAPE and NAE metabolic enzymes.


Subject(s)
Adipose Tissue , Lipid Metabolism , Animals , Female , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Ethanolamines/metabolism , Lipolysis , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism
2.
Vaccine ; 38(17): 3313-3320, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32184032

ABSTRACT

Dengue fever, caused by dengue viruses (DENV 1-4) is a leading cause of illness and death in the tropics and subtropics. Therefore, an effective vaccine is urgently needed. Currently, the only available licensed dengue vaccine is a chimeric live attenuated vaccine that shows varying efficacy depending on serotype, age and baseline DENV serostatus. Accordingly, a dengue vaccine that is effective in seronegative adults, children of all ages and in immunocompromised individuals is still needed. We are currently researching the use of psoralen to develop an inactivated tetravalent dengue vaccine. Unlike traditional formalin inactivation, psoralen inactivates pathogens at the nucleic acid level, potentially preserving envelope protein epitopes important for protective anti-dengue immune responses. We prepared highly purified monovalent vaccine lots of formalin- and psoralen-inactivated DENV 1-4, using Capto DeVirS and Capto Core 700 resin based column chromatography. Tetravalent psoralen-inactivated vaccines (PsIV) and formalin-inactivated vaccines (FIV) were prepared by combining the four monovalent vaccines. Mice were immunized with either a low or high dose of PsIV or FIV to evaluate the immunogenicity of monovalent as well as tetravalent formulations of each inactivation method. In general, the monovalent and tetravalent PsIVs elicited equivalent or higher titers of neutralizing antibodies to DENV than the FIV dengue vaccines and this response was dose dependent. The immunogenicity of tetravalent dengue PsIVs and FIVs were also evaluated in nonhuman primates (NHPs). Consistent with what was observed in mice, significantly higher neutralizing antibody titers for each dengue serotype were observed in the NHPs vaccinated with the tetravalent dengue PsIV compared to those vaccinated with the tetravalent dengue FIV, indicative of the importance of envelope protein epitope preservation during psoralen inactivation of DENV.


Subject(s)
Dengue Vaccines/immunology , Dengue , Ficusin , Formaldehyde , Immunogenicity, Vaccine , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dengue/prevention & control , Mice , Primates , Vaccines, Inactivated/immunology
3.
Nutrients ; 11(9)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31510077

ABSTRACT

High tissue iron levels are a risk factor for multiple chronic diseases including type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). To investigate causal relationships and underlying mechanisms, we used an established NAFLD model-mice fed a high fat diet with supplemental fructose in the water ("fast food", FF). Iron did not affect excess hepatic triglyceride accumulation in the mice on FF, and FF did not affect iron accumulation compared to normal chow. Mice on low iron are protected from worsening of markers for non-alcoholic steatohepatitis (NASH), including serum transaminases and fibrotic gene transcript levels. These occurred prior to the onset of significant insulin resistance or changes in adipokines. Transcriptome sequencing revealed the major effects of iron to be on signaling by the transforming growth factor beta (TGF-ß) pathway, a known mechanistic factor in NASH. High iron increased fibrotic gene expression in vitro, demonstrating that the effect of dietary iron on NASH is direct. Conclusion: A lower tissue iron level prevents accelerated progression of NAFLD to NASH, suggesting a possible therapeutic strategy in humans with the disease.


Subject(s)
Iron Deficiencies , Iron, Dietary/administration & dosage , Liver Cirrhosis/prevention & control , Liver/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Animal Feed , Animals , Diet, High-Fat , Disease Models, Animal , Disease Progression , Fructose , Gene Expression Regulation , Hep G2 Cells , Humans , Iron/blood , Iron, Dietary/blood , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction
4.
J Biol Chem ; 294(14): 5487-5495, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30709903

ABSTRACT

We previously reported that iron down-regulates transcription of the leptin gene by increasing occupancy of phosphorylated cAMP response element-binding protein (pCREB) at two sites in the leptin gene promoter. Several nutrient-sensing pathways including O-GlcNAcylation also regulate leptin. We therefore investigated whether O-glycosylation plays a role in iron- and CREB-mediated regulation of leptin. We found that high iron decreases protein O-GlcNAcylation both in cultured 3T3-L1 adipocytes and in mice fed high-iron diets and down-regulates leptin mRNA and protein levels. Glucosamine treatment, which bypasses the rate-limiting step in the synthesis of substrate for glycosylation, increased both O-GlcNAc and leptin, whereas inhibition of O-glycosyltransferase (OGT) decreased O-GlcNAc and leptin. The increased leptin levels induced by glucosamine were susceptible to the inhibition by iron, but in the case of OGT inhibition, iron did not further decrease leptin. Mice with deletion of the O-GlcNAcase gene, either via whole-body heterozygous deletion or through adipocyte-targeted homozygous deletion, exhibited increased O-GlcNAc levels in adipose tissue and increased leptin levels that were inhibited by iron. Of note, iron increased the occupancy of pCREB and decreased the occupancy of O-GlcNAcylated CREB on the leptin promoter. These patterns observed in our experimental models suggest that iron exerts its effects on leptin by decreasing O-glycosylation and not by increasing protein deglycosylation and that neither O-GlcNAcase nor OGT mRNA and protein levels are affected by iron. We conclude that iron down-regulates leptin by decreasing CREB glycosylation, resulting in increased CREB phosphorylation and leptin promoter occupancy by pCREB.


Subject(s)
Adipocytes/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Down-Regulation/drug effects , Iron/pharmacology , Leptin/biosynthesis , Models, Biological , 3T3-L1 Cells , Animals , Glucosamine/metabolism , Glycosylation/drug effects , Iron/metabolism , Mice , Promoter Regions, Genetic
5.
Diabetes ; 65(6): 1521-33, 2016 06.
Article in English | MEDLINE | ID: mdl-26993063

ABSTRACT

Hypoxia and iron both regulate metabolism through multiple mechanisms, including hypoxia-inducible transcription factors. The hypoxic effects on glucose disposal and glycolysis are well established, but less is known about the effects of hypoxia and iron deficiency on hepatic gluconeogenesis. We therefore assessed their effects on hepatic glucose production in mice. Weanling C57BL/6 male mice were fed an iron-deficient (4 ppm) or iron-adequate (35 ppm) diet for 14 weeks and were continued in normoxia or exposed to hypoxia (8% O2) for the last 4 weeks of that period. Hypoxic mice became hypoglycemic and displayed impaired hepatic glucose production after a pyruvate challenge, an effect accentuated by an iron-deficient diet. Stabilization of hypoxia-inducible factors under hypoxia resulted in most glucose being converted into lactate and not oxidized. Hepatic pyruvate concentrations were lower in hypoxic mice. The decreased hepatic pyruvate levels were not caused by increased utilization but rather were contributed to by decreased metabolism from gluconeogenic amino acids. Pyruvate carboxylase, which catalyzes the first step of gluconeogenesis, was also downregulated by hypoxia with iron deficiency. Hypoxia, and more so hypoxia with iron deficiency, results in hypoglycemia due to decreased levels of hepatic pyruvate and decreased pyruvate utilization for gluconeogenesis. These data highlight the role of iron levels as an important determinant of glucose metabolism in hypoxia.


Subject(s)
Glucose/biosynthesis , Hypoxia/metabolism , Iron Deficiencies , Liver/metabolism , Animals , Gluconeogenesis , Hypoglycemia/etiology , Hypoxia/complications , Iron/physiology , Male , Mice , Mice, Inbred C57BL , Pyruvic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...