Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 22(1)2022 09 01.
Article in English | MEDLINE | ID: mdl-35948277

ABSTRACT

Mating disruption with insect sex pheromones is an attractive and environmentally friendly technique for pest management. Several Lepidoptera sex pheromones have been produced in yeast, where biosynthesis could be accomplished by the expression of fatty acyl-CoA desaturases and fatty acyl-CoA reductases. In this study, we aimed to develop yeast Yarrowia lipolytica cell factories for producing Lepidoptera pheromones which biosynthesis additionally requires ß-oxidation, such as (Z)-7-dodecenol (Z7-12:OH), (Z)-9-dodecenol (Z9-12:OH), and (Z)-7-tetradecenol (Z7-14:OH). We expressed fatty acyl-CoA desaturases from Drosophila melanogaster (Dmd9) or Lobesia botrana (Lbo_PPTQ) and fatty acyl-CoA reductase from Helicoverpa armigera (HarFAR) in combinations with 11 peroxisomal oxidases of different origins. Yeast cultivations were performed with supplementation of methyl myristate (14:Me). The oxidase Lbo_31670 from L. botrana provided the highest titers of (Z)-7-dodecenoate, (Z)-9-dodecenoate, and (Z)-7-tetradecenoate. However, no chain-shortened fatty alcohols were produced. The mutation of fatty acid synthase (Fas2pI1220F) to increase myristate production did not lead to targeted fatty alcohol production. The problem was solved by directing the reductase into peroxisomes, where the strain with Dmd9 produced 0.10 ± 0.02 mg/l of Z7-12:OH and 0.48 ± 0.03 mg/l of Z7-14:OH, while the strain with Lbo_PPTQ produced 0.21 ± 0.03 mg/l of Z9-12:OH and 0.40 ± 0.07 mg/l of Z7-14:OH. In summary, the engineering of ß-oxidation in Y. lipolytica allowed expanding the portfolio of microbially produced insect sex pheromones.


Subject(s)
Moths , Sex Attractants , Amino Acid Sequence , Animals , Coenzyme A/metabolism , Drosophila melanogaster/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Insecta , Myristates/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sex Attractants/genetics , Sex Attractants/metabolism , Yeasts/genetics
2.
Biotechnol J ; 16(6): e2100004, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33656777

ABSTRACT

The European corn borer (ECB) Ostrinia nubilalis is a widespread pest of cereals, particularly maize. Mating disruption with the sex pheromone is a potentially attractive method for managing this pest; however, chemical synthesis of pheromones requires expensive starting materials and catalysts and generates hazardous waste. The goal of this study was to develop a biotechnological method for the production of ECB sex pheromone. Our approach was to engineer the oleaginous yeast Yarrowia lipolytica to produce (Z)-11-tetradecenol (Z11-14:OH), which can then be chemically acetylated to (Z)-11-tetradecenyl acetate (Z11-14:OAc), the main pheromone component of the Z-race of O. nubilalis. First, a C14 platform strain with increased biosynthesis of myristoyl-CoA was obtained by introducing a point mutation into the α-subunit of fatty acid synthase, replacing isoleucine 1220 with phenylalanine (Fas2pI1220F ). The intracellular accumulation of myristic acid increased 8.4-fold. Next, fatty acyl-CoA desaturases (FAD) and fatty acyl-CoA reductases (FAR) from nine different species of Lepidoptera were screened in the C14 platform strain, individually and in combinations. A titer of 29.2 ± 1.6 mg L-1  Z11-14:OH was reached in small-scale cultivation with an optimal combination of a FAD (Lbo_PPTQ) from Lobesia botrana and FAR (HarFAR) from Helicoverpa armigera. When the second copies of FAD and FAR genes were introduced, the titer improved 2.1-fold. The native FAS1 gene's overexpression led to a further 1.5-fold titer increase, reaching 93.9 ± 11.7 mg L-1  in small-scale cultivation. When the same engineered strain was cultivated in controlled 1 L bioreactors in fed-batch mode, 188.1 ± 13.4 mg L-1  of Z11-14:OH was obtained. Fatty alcohols were extracted from the biomass and chemically acetylated to obtain Z11-14:OAc. Electroantennogram experiments showed that males of the Z-race of O. nubilalis were responsive to biologically-derived pheromone blend. Behavioral bioassays in a wind tunnel revealed attraction of male O. nubilalis, although full precopulatory behavior was observed less often than for the chemically synthesized pheromone blend. The study paves the way for the production of ECB pheromone by fermentation.


Subject(s)
Moths , Sex Attractants , Yarrowia , Yeast, Dried , Animals , Male , Moths/genetics , Yarrowia/genetics , Zea mays/genetics
3.
Metab Eng ; 62: 312-321, 2020 11.
Article in English | MEDLINE | ID: mdl-33045365

ABSTRACT

The use of insect sex pheromones is an alternative technology for pest control in agriculture and forestry, which, in contrast to insecticides, does not have adverse effects on human health or environment and is efficient also against insecticide-resistant insect populations. Due to the high cost of chemically synthesized pheromones, mating disruption applications are currently primarily targeting higher value crops, such as fruits. Here we demonstrate a biotechnological method for the production of (Z)-hexadec-11-en-1-ol and (Z)-tetradec-9-en-1-ol, using engineered yeast cell factories. These unsaturated fatty alcohols are pheromone components or the immediate precursors of pheromone components of several economically important moth pests. Biosynthetic pathways towards several pheromones or their precursors were reconstructed in the oleaginous yeast Yarrowia lipolytica, which was further metabolically engineered for improved pheromone biosynthesis by decreasing fatty alcohol degradation and downregulating storage lipid accumulation. The sex pheromone of the cotton bollworm Helicoverpa armigera was produced by oxidation of fermented fatty alcohols into corresponding aldehydes. The resulting yeast-derived pheromone was just as efficient and specific for trapping of H. armigera male moths in cotton fields in Greece as a conventionally produced synthetic pheromone mixture. We further demonstrated the production of (Z)-tetradec-9-en-1-yl acetate, the main pheromone component of the fall armyworm Spodoptera frugiperda. Taken together our work describes a biotech platform for the production of commercially relevant titres of moth pheromones for pest control via yeast fermentation.


Subject(s)
Moths , Sex Attractants , Yarrowia , Animals , Fermentation , Humans , Male , Pest Control
SELECTION OF CITATIONS
SEARCH DETAIL
...