Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(11): 113331, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37910506

ABSTRACT

Neurotransmitter receptors partition into nanometer-scale subdomains within the postsynaptic membrane that are precisely aligned with presynaptic neurotransmitter release sites. While spatial coordination between pre- and postsynaptic elements is observed at both excitatory and inhibitory synapses, the functional significance of this molecular architecture has been challenging to evaluate experimentally. Here we utilized an optogenetic clustering approach to acutely alter the nanoscale organization of the postsynaptic inhibitory scaffold gephyrin while monitoring synaptic function. Gephyrin clustering rapidly enlarged postsynaptic area, laterally displacing GABAA receptors from their normally precise apposition with presynaptic active zones. Receptor displacement was accompanied by decreased synaptic GABAA receptor currents even though presynaptic release probability and the overall abundance and function of synaptic GABAA receptors remained unperturbed. Thus, acutely repositioning neurotransmitter receptors within the postsynaptic membrane profoundly influences synaptic efficacy, establishing the functional importance of precision pre-/postsynaptic molecular coordination at inhibitory synapses.


Subject(s)
Receptors, GABA-A , Synapses , Synapses/physiology , Carrier Proteins , Receptors, Neurotransmitter , gamma-Aminobutyric Acid
2.
eNeuro ; 8(6)2021.
Article in English | MEDLINE | ID: mdl-34789478

ABSTRACT

Secreted amyloid-ß (Aß) peptide forms neurotoxic oligomeric assemblies thought to cause synaptic deficits associated with Alzheimer's disease (AD). Soluble Aß oligomers (Aßo) directly bind to neurons with high affinity and block plasticity mechanisms related to learning and memory, trigger loss of excitatory synapses and eventually cause cell death. While Aßo toxicity has been intensely investigated, it remains unclear precisely where Aßo initially binds to the surface of neurons and whether sites of binding relate to synaptic deficits. Here, we used a combination of live cell, super-resolution and ultrastructural imaging techniques to investigate the kinetics, reversibility and nanoscale location of Aßo binding. Surprisingly, Aßo does not bind directly at the synaptic cleft as previously thought but, instead, forms distinct nanoscale clusters encircling the postsynaptic membrane with a significant fraction also binding presynaptic axon terminals. Synaptic plasticity deficits were observed at Aßo-bound synapses but not closely neighboring Aßo-free synapses. Thus, perisynaptic Aßo binding triggers spatially restricted signaling mechanisms to disrupt synaptic function. These data provide new insight into the earliest steps of Aßo pathology and lay the groundwork for future studies evaluating potential surface receptor(s) and local signaling mechanisms responsible for Aßo binding and synapse dysfunction.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Neuronal Plasticity , Neurons , Synapses
3.
Cell Rep ; 26(13): 3537-3550.e4, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917310

ABSTRACT

Long-term information storage in the brain requires continual modification of the neuronal transcriptome. Synaptic inputs located hundreds of micrometers from the nucleus can regulate gene transcription, requiring high-fidelity, long-range signaling from synapses in dendrites to the nucleus in the cell soma. Here, we describe a synapse-to-nucleus signaling mechanism for the activity-dependent transcription factor NFAT. NMDA receptors activated on distal dendrites were found to initiate L-type Ca2+ channel (LTCC) spikes that quickly propagated the length of the dendrite to the soma. Surprisingly, LTCC propagation did not require voltage-gated Na+ channels or back-propagating action potentials. NFAT nuclear recruitment and transcriptional activation only occurred when LTCC spikes invaded the somatic compartment, and the degree of NFAT activation correlated with the number of somatic LTCC Ca2+ spikes. Together, these data support a model for synapse to nucleus communication where NFAT integrates somatic LTCC Ca2+ spikes to alter transcription during periods of heightened neuronal activity.


Subject(s)
Calcium Channels, L-Type/metabolism , Cell Nucleus/metabolism , NFATC Transcription Factors/metabolism , Synapses/metabolism , Action Potentials , Animals , Cell Communication , Cells, Cultured , Female , Hippocampus/cytology , Humans , Male , Models, Neurological , Rats , Rats, Sprague-Dawley , Synaptic Potentials
4.
Neuron ; 101(5): 863-875.e6, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30704911

ABSTRACT

Regulated secretion is critical for diverse biological processes ranging from immune and endocrine signaling to synaptic transmission. Botulinum and tetanus neurotoxins, which specifically proteolyze vesicle fusion proteins involved in regulated secretion, have been widely used as experimental tools to block these processes. Genetic expression of these toxins in the nervous system has been a powerful approach for disrupting neurotransmitter release within defined circuitry, but their current utility in the brain and elsewhere remains limited by lack of spatial and temporal control. Here we engineered botulinum neurotoxin B so that it can be activated with blue light. We demonstrate the utility of this approach for inducibly disrupting excitatory neurotransmission, providing a first-in-class optogenetic tool for persistent, light-triggered synaptic inhibition. In addition to blocking neurotransmitter release, this approach will have broad utility for conditionally disrupting regulated secretion of diverse bioactive molecules, including neuropeptides, neuromodulators, hormones, and immune molecules. VIDEO ABSTRACT.


Subject(s)
Botulinum Toxins/pharmacology , Optogenetics/methods , Synaptic Transmission/drug effects , Animals , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Botulinum Toxins/genetics , Botulinum Toxins/radiation effects , Caenorhabditis elegans , Cells, Cultured , Cryptochromes/genetics , Female , HEK293 Cells , Humans , Light , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/radiation effects , SNARE Proteins/metabolism , Synapses/metabolism , Synapses/physiology , Vesicle-Associated Membrane Protein 2/metabolism
5.
Cell Rep ; 21(8): 2134-2146, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29166605

ABSTRACT

The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs) with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs) regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.


Subject(s)
Dendrites/metabolism , Long-Term Potentiation/physiology , Animals , Cells, Cultured , Endosomes/metabolism , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
6.
Neuron ; 93(3): 646-660.e5, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28132827

ABSTRACT

The molecular composition of the postsynaptic membrane is sculpted by synaptic activity. During synaptic plasticity at excitatory synapses, numerous structural, signaling, and receptor molecules concentrate at the postsynaptic density (PSD) to regulate synaptic strength. We developed an approach that uses light to tune the abundance of specific molecules in the PSD. We used this approach to investigate the relationship between the number of AMPA-type glutamate receptors in the PSD and synaptic strength. Surprisingly, adding more AMPA receptors to excitatory contacts had little effect on synaptic strength. Instead, we observed increased excitatory input through the apparent addition of new functional sites. Our data support a model where adding AMPA receptors is sufficient to activate synapses that had few receptors to begin with, but that additional remodeling events are required to strengthen established synapses. More broadly, this approach introduces the precise spatiotemporal control of optogenetics to the molecular control of synaptic function.


Subject(s)
Neuronal Plasticity/genetics , Neurons/metabolism , Optogenetics/methods , Post-Synaptic Density/metabolism , Receptors, AMPA/genetics , Synapses/metabolism , Synaptic Membranes/metabolism , Animals , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cryptochromes/genetics , Hippocampus/cytology , Long-Term Potentiation , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Synapses/physiology
7.
J Neurosci ; 36(45): 11532-11543, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27911757

ABSTRACT

Beta amyloid (Aß) triggers the elimination of excitatory synaptic connections in the CNS, an early manifestation of Alzheimer's disease. Oligomeric assemblies of Aß peptide associate with excitatory synapses resulting in synapse elimination through a process that requires NMDA-type glutamate receptor activation. Whether Aß affects synaptic NMDA receptor (NMDAR) function directly and acts locally at synapses to which it has bound and whether synaptic activity influences Aß synaptic binding and synaptotoxicity have remained fundamental questions. Here, we used subcellular Ca2+ imaging in rat hippocampal neurons to visualize NMDAR function at individual synapses before and after Aß application. Aß triggered a robust impairment of NMDAR Ca2+ entry at most, but not all, synapses. NMDAR function was more severely impaired at highly active synapses and synapses with bound Aß, but activity was not required for Aß synapse binding. Blocking NMDARs during Aß exposure prevented Aß-mediated impairment. Finally, Aß impaired NMDAR Ca2+ entry at doses much lower than those required for NMDAR internalization, revealing a novel, potent mode of NMDAR regulation by Aß. SIGNIFICANCE STATEMENT: Amyloid ß (Aß) is strongly implicated in Alzheimer's disease. Aß triggers the elimination of excitatory synapses through a mechanism that requires NMDA receptors (NMDARs). However, little is known about how or whether Aß influences synaptic NMDAR function. We used an imaging-based assay to investigate the relationship among Aß binding, activity, and NMDAR function at individual synapses. Aß triggered a robust impairment of NMDAR Ca2+ entry at most, but not all, synapses. NMDAR function was more severely impaired at highly active synapses and synapses with bound Aß. Blocking NMDARs during Aß exposure prevented Aß-mediated impairment. Together, our experiments reveal a novel use-dependent, potent, and local mode of Aß-mediated NMDAR impairment.


Subject(s)
Amyloid beta-Peptides/metabolism , Calcium Signaling/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Voltage-Sensitive Dye Imaging/methods , Animals , Cells, Cultured , Female , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...