Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 12(8): e0182233, 2017.
Article in English | MEDLINE | ID: mdl-28767694

ABSTRACT

The elicitation of expert judgment is an important tool for assessment of risks and impacts in environmental management contexts, and especially important as decision-makers face novel challenges where prior empirical research is lacking or insufficient. Evidence-driven elicitation approaches typically involve techniques to derive more accurate probability distributions under fairly specific contexts. Experts are, however, prone to overconfidence in their judgements. Group elicitations with diverse experts can reduce expert overconfidence by allowing cross-examination and reassessment of prior judgements, but groups are also prone to uncritical "groupthink" errors. When the problem context is underspecified the probability that experts commit groupthink errors may increase. This study addresses how structured workshops affect expert variability among and certainty within responses in a New Zealand case study. We find that experts' risk estimates before and after a workshop differ, and that group elicitations provided greater consistency of estimates, yet also greater uncertainty among experts, when addressing prominent impacts to four different ecosystem services in coastal New Zealand. After group workshops, experts provided more consistent ranking of risks and more consistent best estimates of impact through increased clarity in terminology and dampening of extreme positions, yet probability distributions for impacts widened. The results from this case study suggest that group elicitations have favorable consequences for the quality and uncertainty of risk judgments within and across experts, making group elicitation techniques invaluable tools in contexts of limited data.


Subject(s)
Expert Testimony , Judgment , Bays , Ecosystem , Environmental Exposure , Humans , New Zealand , Observer Variation
3.
J Environ Manage ; 199: 229-241, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28549274

ABSTRACT

Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits - fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity-addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for approaches like this to understand mechanisms of impact, in order to develop strategies to manage them.


Subject(s)
Climate Change , Ecosystem , Fisheries , Biodiversity , Humans , New Zealand
4.
Environ Sci Process Impacts ; 19(9): 1134-1141, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28406515

ABSTRACT

The sustainable management of estuarine and coastal ecosystems requires robust frameworks due to the presence of multiple physical and chemical stressors. In this study, we assessed whether ecological health decline, based on community structure composition changes along a pollution gradient, occurred at levels below guideline threshold values for copper, zinc and lead. Canonical analysis of principal coordinates (CAP) was used to characterise benthic communities along a metal contamination gradient. The analysis revealed changes in benthic community distribution at levels below the individual guideline values for the three metals. These results suggest that field-based measures of ecological health analysed with multivariate tools can provide additional information to single metal guideline threshold values to monitor large systems exposed to multiple stressors.


Subject(s)
Environmental Monitoring/methods , Estuaries , Geologic Sediments/chemistry , Invertebrates/drug effects , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Invertebrates/growth & development , Metals, Heavy/toxicity , New Zealand , Species Specificity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...