Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 43(2): 262-276, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36226588

ABSTRACT

Trees have been used for phytoremediation and as biomonitors of air pollution. However, the mechanisms by which trees mitigate nanoparticle pollution in the environment are still unclear. We investigated whether two important tree species, European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.), are able to take up and transport differently charged gold nanoparticles (Au-NPs) into their stem by comparing leaf-to-root and root-to-leaf pathways. Au-NPs were taken up by roots and leaves, and a small fraction was transported to the stem in both species. Au-NPs were transported from leaves to roots but not vice versa. Leaf Au uptake was higher in beech than in pine, probably because of the higher stomatal density and wood characteristics of beech. Confocal (3D) analysis confirmed the presence of Au-NPs in trichomes and leaf blade, about 20-30 µm below the leaf surface in beech. Most Au-NPs likely penetrated into the stomatal openings through diffusion of Au-NPs as suggested by the 3D XRF scanning analysis. However, trichomes were probably involved in the uptake and internal immobilization of NPs, besides their ability to retain them on the leaf surface. The surface charge of Au-NPs may have played a role in their adhesion and uptake, but not in their transport to different tree compartments. Stomatal conductance did not influence the uptake of Au-NPs. This is the first study that shows nanoparticle uptake and transport in beech and pine, contributing to a better understanding of the interactions of NPs with different tree species.


Subject(s)
Fagus , Metal Nanoparticles , Pinus sylvestris , Pinus , Fagus/metabolism , Gold/metabolism , Trees , Plant Leaves/metabolism
2.
NanoImpact ; 25: 100374, 2022 01.
Article in English | MEDLINE | ID: mdl-35559880

ABSTRACT

Plastic pollution is a major global challenge of our times, baring a potential threat for the environment and the human health. The increasing abundance of nanoplastic (NP) and microplastic (MP) particles in the human diet might negatively affect human health since they - particularly in patients suffering from inflammatory bowel disease (IBD) - might surpass the intestinal barrier. To investigate whether ingested plastic particles cross the intestinal epithelium and promote bowel inflammation, mice were supplemented with NP or MP polystyrene (PS) particles for 24 or 12 weeks before inducing acute or chronic dextran sodium sulfate (DSS) colitis with continuous plastic administration. Although ingested PS particles accumulated in the small intestine and organs distant from the gastrointestinal tract, PS ingestion did not affect intestinal health nor did it promote colitis severity. Although the lack of colitis-promoting effects of small PS particles might be a relief for IBD patients, potential accumulative effects of ingested plastic particles on the gastrointestinal health cannot be excluded.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Colitis/chemically induced , Humans , Inflammatory Bowel Diseases/chemically induced , Mice , Mice, Inbred C57BL , Microplastics , Plastics , Polystyrenes
3.
RSC Adv ; 11(50): 31547-31556, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496858

ABSTRACT

Activated carbon (AC) exhibits superior sorption properties compared to other porous materials, due to well-developed porous structures and high surface areas. Therefore, it is widely applied in its various forms in water purification to remove a diverse range of contaminating species. The presence of viruses in fresh water bodies poses a serious issue for human health. However, AC has not yet been commonly applied to waterborne virus removal. In this study, we present oxidation and copper impregnation treatment procedures of activated carbon fibers (ACFs) that resulted in porous structure and surface chemistry modifications. The effect of these modifications on virus removal was investigated by experimental flow studies and revealed up to 2.8 log10 reduction value (LRV) and 3.6 LRV of MS2 bacterio-phages for non-modified and oxidized ACFs, respectively, emphasizing the advantages of ACF surface functionalization. Copper modified fibers demonstrated a high sensitivity to media composition, resulting in a release of metal and therefore limited virucidal capacity.

4.
Environ Sci Technol ; 50(4): 1759-68, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26756906

ABSTRACT

The objective of this work was to investigate the fate of silver nanoparticles (Ag-NPs) in a sludge-amended soil cultivated with monocot (Wheat) and dicot (Rape) crop species. A pot experiment was performed with sludges produced in a pilot wastewater treatment plant containing realistic Ag concentrations (18 and 400 mg kg(-1), 14 mg kg(-1) for the control). Investigations focused on the highest dose treatment. X-ray absorption spectroscopy (XAS) showed that Ag2S was the main species in the sludge and amended soil before and after plant culture. The second most abundant species was an organic and/or amorphous Ag-S phase whose proportion slightly varied (from 24% to 36%) depending on the conditions. Micro and nano X-ray fluorescence (XRF) showed that Ag was preferentially associated with S-rich particles, including organic fragments, of the sludge and amended soils. Ag was distributed as heteroaggregates with soil components (size ranging from ≤0.5 to 1-3 µm) and as diffused zones likely corresponding to sorbed/complexed Ag species. Nano-XRF evidenced the presence of mixed metallic sulfides. Ag was weakly exchangeable and labile. However, micronutrient mobilization by plant roots and organic matter turnover may induce Ag species interconversion eventually leading to Ag release on longer time scales. Together, these data provide valuable information for risk assessment of sewage sludge application on agricultural soils.


Subject(s)
Nanoparticles , Sewage/chemistry , Silver , Soil/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Brassica rapa/growth & development , Brassica rapa/metabolism , Nanoparticles/analysis , Nanoparticles/chemistry , Plant Roots/metabolism , Risk Assessment , Silver/chemistry , Silver/pharmacokinetics , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Sulfur/chemistry , Switzerland , Triticum/growth & development , Triticum/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , X-Ray Absorption Spectroscopy
5.
Sci Total Environ ; 535: 20-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25582606

ABSTRACT

Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72-95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag2S, both forms primarily occurring as nanoparticles with diameters<100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~30 min, the remaining AgCl was transformed into nanoparticulate Ag2S. Ag2S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (<0.5 µg L(-1)) confirmed the very high removal efficiency of Ag from the wastewater stream (>95%).


Subject(s)
Environmental Monitoring , Models, Chemical , Nanoparticles/analysis , Silver Compounds/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Nanoparticles/chemistry , Sewage , Silver Compounds/chemistry , Water Pollutants, Chemical/chemistry
6.
Environ Sci Technol ; 48(9): 4885-92, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24678586

ABSTRACT

Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides.


Subject(s)
Cadmium Compounds/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Kinetics , Oxygen/chemistry , Solubility , Wastewater/chemistry , X-Ray Absorption Spectroscopy , X-Ray Diffraction
7.
Water Res ; 47(12): 3866-77, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23571111

ABSTRACT

Discharge of silver nanoparticles (Ag-NP) from textiles and cosmetics, todays major application areas for metallic Ag-NP, into wastewater is inevitable. Transformation and removal processes in sewers and wastewater treatment plants (WWTP) will determine the impact of Ag-NP on aquatic and terrestrial environments, via the effluents of the WWTP and via the use of digested sludge as fertilizer. We thus conducted experiments addressing the behavior of Ag-NP in sewers and in WWTP. We spiked Ag-NP to a 5 km long main trunk sewer and collected 40 wastewater samples after 500 m, 2400 m and 5000 m each according to the expected travel times of the Ag-NP. Excellent mass closure of the Ag derived by multiplying the measured Ag concentrations times the volumetric flow rates indicate an efficient transport of the Ag-NP without substantial losses to the sewer biofilm. Ag-NP reacted with raw wastewater in batch experiments were sulfidized to roughly 15% after 5 h reaction time as revealed by X-ray absorption spectroscopy (XAS). However, acid volatile sulfide (AVS) concentrations were substantially higher in the sewer channel (100 µM) compared to the batch experiments (3 µM; still sufficient to sulfidize spiked 2 µM Ag) possibly resulting in a higher degree of sulfidation in the sewer channel. We further investigated the removal efficiency of 10 nm and 100 nm Ag- and gold (Au)-NP coated with citrate or polyvinylpyrrolidone in activated sludge batch experiments. We obtained very high removal efficiencies (≈ 99%) irrespective of size and coating for Ag- and Au-NP, the latter confirming that the particle type was of minor importance with respect to the degree of NP removal. We observed a strong size dependence of the sulfidation kinetics. We conclude that Ag-NP discharged to the wastewater stream will become sulfidized to various degrees in the sewer system and are efficiently transported to the WWTP. The sulfidation of the Ag-NP will continue in the WWTP, but primarily depending on the size the Ag-NP, may not be complete. Very high removal efficiencies in the WWTP will divert most of the Ag-NP mass flow to the digester and only a small fraction of the Ag will be released to surface waters.


Subject(s)
Cities , Metal Nanoparticles/analysis , Silver/analysis , Wastewater/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning Transmission , Microscopy, Phase-Contrast , Sewage/chemistry , X-Ray Absorption Spectroscopy
8.
Environ Sci Technol ; 45(9): 3902-8, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21466186

ABSTRACT

We investigated the behavior of metallic silver nanoparticles (Ag-NP) in a pilot wastewater treatment plant (WWTP) fed with municipal wastewater. The treatment plant consisted of a nonaerated and an aerated tank and a secondary clarifier. The average hydraulic retention time including the secondary clarifier was 1 day and the sludge age was 14 days. Ag-NP were spiked into the nonaerated tank and samples were collected from the aerated tank and from the effluent. Ag concentrations determined by inductively coupled plasma-mass spectrometry (ICP-MS) were in good agreement with predictions based on mass balance considerations. Transmission electron microscopy (TEM) analyses confirmed that nanoscale Ag particles were sorbed to wastewater biosolids, both in the sludge and in the effluent. Freely dispersed nanoscale Ag particles were only observed in the effluent during the initial pulse spike. X-ray absorption spectroscopy (XAS) measurements indicated that most Ag in the sludge and in the effluent was present as Ag(2)S. Results from batch experiments suggested that Ag-NP transformation to Ag(2)S occured in the nonaerated tank within less than 2 h. Physical and chemical transformations of Ag-NP in WWTPs control the fate, the transport and also the toxicity and the bioavailability of Ag-NP and therefore must be considered in future risk assessments.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry , Adsorption , Metal Nanoparticles/ultrastructure , Sewage/analysis , Waste Disposal, Fluid/methods
9.
Environ Pollut ; 158(9): 2900-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20621404

ABSTRACT

In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 micro Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly <15 nm and are released as composite colloids attached to the organic binders of the paint. Microscopic results indicate that the Ag-NP are likely transformed to considerably less toxic forms such as Ag2S.


Subject(s)
Metal Nanoparticles/analysis , Paint/analysis , Silver/analysis , Water Pollutants, Chemical/analysis , Kinetics , Metal Nanoparticles/chemistry , Models, Chemical , Rain/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...