Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38699869

ABSTRACT

Understanding how tropical corals respond to temperatures is important to evaluating their capacity to persist in a warmer future. We studied the common Pacific coral Pocillopora over 44° of latitude, and used populations at three islands with different thermal regimes to compare their responses to temperature using thermal performance curves (TPCs) for respiration and gross photosynthesis. Corals were sampled in the local autumn from Moorea, Guam and Okinawa, where mean±s.d. annual seawater temperature is 28.0±0.9°C, 28.9±0.7°C and 25.1±3.4°C, respectively. TPCs for respiration were similar among latitudes, the thermal optimum (Topt) was above the local maximum temperature at all three islands, and maximum respiration was lowest at Okinawa. TPCs for gross photosynthesis were wider, implying greater thermal eurytopy, with a higher Topt in Moorea versus Guam and Okinawa. Topt was above the maximum temperature in Moorea, but was similar to daily temperatures over 13% of the year in Okinawa and 53% of the year in Guam. There was greater annual variation in daily temperatures in Okinawa than Guam or Moorea, which translated to large variation in the supply of metabolic energy and photosynthetically fixed carbon at higher latitudes. Despite these trends, the differences in TPCs for Pocillopora spp. were not profoundly different across latitudes, reducing the likelihood that populations of these corals could better match their phenotypes to future more extreme temperatures through migration. Any such response would place a premium on high metabolic plasticity and tolerance of large seasonal variations in energy budgets.


Subject(s)
Anthozoa , Photosynthesis , Temperature , Animals , Anthozoa/physiology , Photosynthesis/physiology , Seasons , Seawater/chemistry
2.
Sci Rep ; 7(1): 6094, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733608

ABSTRACT

An increasing number of studies are showing that Antarctic mega- and macrofauna are highly diverse, however, little is known about meiofaunal biodiversity in sediment communities, which are a vital part of a healthy and functional ecosystem. This is the first study to analyse community DNA (targeting meiofauna) using metabarcoding to investigate biodiversity levels in sediment communities of the Antarctic Peninsula. The results show that almost all of the meiofaunal biodiversity in the benthic habitat has yet to be characterised, levels of biodiversity were higher than expected and similar to temperate regions, albeit with the existence of potentially new and locally adapted species never described before at the molecular level. The Rothera meiofaunal sample sites showed four dominant eukaryotic groups, the nematodes, arthropods, platyhelminthes, and the annelids; some of which could comprise species complexes. Comparisons with deep-sea data from the same region suggest little exchange of Operational Taxonomic Units (OTUs) between depths with the nematodes prevalent at all depths, but sharing the shallow water benthos with the copepods. This study provides a preliminary analysis of benthic Antarctic Peninsula meiofauna using high throughput sequencing which substantiates how little is known on the biodiversity of one of the most diverse, yet underexplored communities of the Antarctic: the benthos.

3.
Mol Ecol ; 26(10): 2698-2710, 2017 May.
Article in English | MEDLINE | ID: mdl-28214372

ABSTRACT

Natural light cycles are important for synchronizing behavioural and physiological rhythms over varying time periods in both plants and animals. An endogenous clock, regulated by positive and negative elements, interacting in feedback loops controls these rhythms. Many corals exhibit diel cycles of polyp expansion and contraction entrained by solar light patterns and monthly cycles of spawning or planulation that correspond to nocturnal lunar light cycles. However, despite considerable interest in studies of coral reproduction, there is currently not enough molecular information about the cellular pathways involved with synchronizing spawning/planulation in broadcast spawners and brooders. To determine whether the endogenous clock is implicated in the regulation of reproductive behaviour in corals, we characterized the transcriptome of Acropora digitifera colonies at twelve time points over a 2-month period of full and new moons, starting with the day of spawning in June 2014. We identified 608 transcripts with differential expression only on the spawning night during the coral setting phase and gamete release. Our data revealed an upregulation of light-sensing molecules and rhodopsin-like receptors that initiate signalling cascades, including the glutamate, SMAD signalling and WNT signalling pathways, neuroactive ligand-receptor interactions and calcium signalling. These are all involved in cell cycling, cell movement, tissue polarity, focal adhesion and cytoskeleton reorganization and together lead to gamete release. These findings can improve the understanding of many time-based cycles and extend our knowledge of the interplay between exogenous signals and the endogenous clock in cnidarians.


Subject(s)
Anthozoa/physiology , Germ Cells/physiology , Moon , Photoperiod , Animals , Japan , Signal Transduction , Transcriptome
4.
J Mol Evol ; 64(2): 196-203, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17211549

ABSTRACT

Mitochondrial genomes have recently become widely used in animal phylogeny, mainly to infer the relationships between vertebrates and other bilaterians. However, only 11 of 723 complete mitochondrial genomes available in the public databases are of early metazoans, including cnidarians (Anthozoa, mainly Scleractinia) and sponges. Although some cnidarians (Medusozoa) are known to possess atypical linear mitochondrial DNA, the anthozoan mitochondrial genome is circular and its organization is similar to that of other metazoans. Because the phylogenetic relationships among Anthozoa as well as their relation to other early metazoans still need to be clarified, we tested whether sequencing the complete mitochondrial genome of Savalia savaglia, an anthozoan belonging to the order Zoantharia (=Zoanthidea), could be useful to infer such relationships. Compared to other anthozoans, S. savaglia's genome is unusually long (20,766 bp) due to the presence of several noncoding intergenic regions (3691 bp). The genome contains all 13 protein coding genes commonly found in metazoans, but like other Anthozoa it lacks most of the tRNAs. Phylogenetic analyses of S. savaglia mitochondrial sequences show Zoantharia branching closely to other Hexacorallia, either as a sister group to Actiniaria or as a sister group to Actiniaria and Scleractinia. The close relationships suggested between Zoantharia and Actiniaria are reinforced by strong similarities in their gene order and the presence of similar introns in the COI and ND5 genes. Our study suggests that mitochondrial genomes can be a source of potentially valuable information on the phylogeny of Hexacorallia and may provide new insights into the evolution of early metazoans.


Subject(s)
Anthozoa/classification , Anthozoa/genetics , Mitochondria/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Genome , Likelihood Functions , Molecular Sequence Data , Mutation , Phylogeny , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...