Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31514136

ABSTRACT

With the growing use of smart cellular devices for entertainment purposes, audio and video streaming services now offer an increasingly wide variety of popular mobile applications that offer portable and accessible ways to consume content. The user interfaces of these applications have become increasingly visual in nature, and are commonly loaded with dense multimedia content such as thumbnail images, animated GIFs, and short videos. To efficiently render these and to aid rapid download to the client display, it is necessary to compress, scale and color subsample them. These operations introduce distortions, reducing the appeal of the application. It is desirable to be able to automatically monitor and govern the visual qualities of these small images, which are usually small images. However, while there exists a variety of high-performing image quality assessment (IQA) algorithms, none have been designed for this particular use case. This kind of content often has unique characteristics, such as overlaid graphics, intentional brightness, gradients, text, and warping. We describe a study we conducted on the subjective and objective quality of images embedded in the displayed user interfaces of mobile streaming applications. We created a database of typical "billboard" and "thumbnail" images viewed on such services. Using the collected data, we studied the effects of compression, scaling and chroma-subsampling on perceived quality by conducting a subjective study. We also evaluated the performance of leading picture quality prediction models on the new database. We report some surprising results regarding algorithm performance, and find that there remains ample scope for future model development.

2.
IEEE Trans Image Process ; 28(7): 3328-3342, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30714919

ABSTRACT

Developing methods to predict how image quality affects the task performance is a topic of great interest in many applications. While such studies have been performed in the medical imaging community, little work has been reported in the security X-ray imaging literature. In this paper, we develop models that predict the effect of image quality on the detection of the improvised explosive device components by bomb technicians in images taken using portable X-ray systems. Using a newly developed NIST-LIVE X-Ray Task Performance Database, we created a set of objective algorithms that predict bomb technician detection performance based on the measures of image quality. Our basic measures are traditional image quality indicators (IQIs) and perceptually relevant natural scene statistics (NSS)-based measures that have been extensively used in visible light image quality prediction algorithms. We show that these measures are able to quantify the perceptual severity of degradations and can predict the performance of expert bomb technicians in identifying threats. Combining NSS- and IQI-based measures yields even better task performance prediction than either of these methods independently. We also developed a new suite of statistical task prediction models that we refer to as quality inspectors of X-ray images (QUIX); we believe this is the first NSS-based model for security X-ray images. We also show that QUIX can be used to reliably predict conventional IQI metric values on the distorted X-ray images.

3.
Article in English | MEDLINE | ID: mdl-30222561

ABSTRACT

The great variations of videographic skills in videography, camera designs, compression and processing protocols, communication and bandwidth environments, and displays leads to an enormous variety of video impairments. Current noreference (NR) video quality models are unable to handle this diversity of distortions. This is true in part because available video quality assessment databases contain very limited content, fixed resolutions, were captured using a small number of camera devices by a few videographers and have been subjected to a modest number of distortions. As such, these databases fail to adequately represent real world videos, which contain very different kinds of content obtained under highly diverse imaging conditions and are subject to authentic, complex and often commingled distortions that are difficult or impossible to simulate. As a result, NR video quality predictors tested on real-world video data often perform poorly. Towards advancing NR video quality prediction, we have constructed a largescale video quality assessment database containing 585 videos of unique content, captured by a large number of users, with wide ranges of levels of complex, authentic distortions. We collected a large number of subjective video quality scores via crowdsourcing. A total of 4776 unique participants took part in the study, yielding more than 205000 opinion scores, resulting in an average of 240 recorded human opinions per video. We demonstrate the value of the new resource, which we call the LIVE Video Quality Challenge Database (LIVE-VQC for short), by conducting a comparison of leading NR video quality predictors on it. This study is the largest video quality assessment study ever conducted along several key dimensions: number of unique contents, capture devices, distortion types and combinations of distortions, study participants, and recorded subjective scores. The database is available for download on this link: http://live.ece.utexas.edu/research/LIVEVQC/index.html.

4.
IEEE Trans Image Process ; 27(7): 3194-3209, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29641400

ABSTRACT

Previous work on natural scene statistics (NSS)-based image models has focused primarily on characterizing the univariate bandpass statistics of single pixels. These models have proven to be powerful tools driving a variety of computer vision and image/video processing applications, including depth estimation, image quality assessment, and image denoising, among others. Multivariate NSS models descriptive of the joint distributions of spatially separated bandpass image samples have, however, received relatively little attention. Here, we develop a closed form bivariate spatial correlation model of bandpass and normalized image samples that completes an existing 2D joint generalized Gaussian distribution model of adjacent bandpass pixels. Our model is built using a set of diverse, high-quality naturalistic photographs, and as a control, we study the model properties on white noise. We also study the way the model fits are affected when the images are modified by common distortions.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3360-3364, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060617

ABSTRACT

Excessive weight is connected with an increased risk of certain life-threatening diseases. However, some evidence shows that among patients with chronic diseases such as heart failure (HF) chronic kidney disease (CKD) and COPD, increased weight is paradoxically associated with a decreased risk of mortality. This counterintuitive phenomenon is referred to as the obesity paradox. The obesity paradox has been mostly observed among certain cohorts of patients with HF, but not specific to patients in the Intensive Care Unit (ICU) setting. This paper studies the relationship between obesity and mortality of ICU patients with and without HF and presents evidence supporting the existence of this paradox. The results provide helpful insights for developing more patient-centric care in ICUs. Additionally, we use both the MIMIC-II and (recently available) MIMIC-III databases, for which few comparative studies exist to date. We demonstrate an aspect of consistency between the databases, providing a significant step towards validating the use of the newly announced MIMIC-III in broader studies.


Subject(s)
Obesity , Body Mass Index , Critical Care , Heart Failure , Humans , Intensive Care Units
SELECTION OF CITATIONS
SEARCH DETAIL
...