Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Thromb Haemost ; 15(7): 1392-1402, 2017 07.
Article in English | MEDLINE | ID: mdl-28457019

ABSTRACT

Essentials The role of von Willebrand Factor (VWF) in the pathophysiology of sickle cell disease is unclear. We assessed markers of VWF during admission for vaso-occlusive crisis (VOC) and steady state. VWF reactivity was higher during VOC and was associated with inflammation and neutrophil activation. Hyper-adhesive VWF may promote VOC in sickle cell disease. SUMMARY: Background Endothelial activation plays a central role in the pathophysiology of vaso-occlusion in sickle cell disease (SCD), facilitating adhesive interactions with circulating blood cells. Upon activation, various adhesive molecules are expressed, including von Willebrand factor (VWF). Increased VWF levels have been observed in patients with SCD during steady state. However, the role of VWF in the pathogenesis of SCD vaso-occlusion is unclear. Objectives To longitudinally assess the quantity and reactivity of VWF and its regulating protease ADAMTS-13 during vaso-occlusive crisis (VOC). Methods In this observational study, we obtained sequential blood samples in adult SCD patients during VOC. Results VWF reactivity was significantly higher during VOC (active VWF, VWF glycoprotein Ib-binding activity, and high molecular weight multimers), whereas platelet count and levels of ADAMTS-13 antigen and ADAMTS-13 activity were concomitantly lower than during steady state. Levels of VWF antigen, VWF propeptide (VWF:pp) and ADAMTS-13 specific activity did not change during VOC. VWF reactivity correlated strongly with markers of inflammation and neutrophil activation, and was inversely correlated with the platelet count. In patients who developed acute chest syndrome, levels of VWF, VWF:pp and active, hyperadhesive VWF were significantly higher, whereas ADAMTS-13 activity was lower, than in patients without this complication. Conclusions We provide the first evidence that VOC in SCD is associated with increased reactivity of VWF, without a pronounced ADAMTS-13 deficiency. This hyper-reactivity may be explained by resistance of VWF to proteolysis, secondary to processes such as inflammation and oxidative stress. Hyperadhesive VWF, scavenging blood cells in the microcirculation, may thereby amplify and sustain VOC in SCD.


Subject(s)
ADAMTS13 Protein/blood , Anemia, Sickle Cell/blood , Vascular Diseases/blood , von Willebrand Factor/metabolism , Acute Disease , Adult , Cell Adhesion , Endothelial Cells/cytology , Female , Humans , Inflammation , Male , Microcirculation , Neutrophils/metabolism , Oxidative Stress , Pain , Prospective Studies , Young Adult
2.
Genes Immun ; 16(6): 422-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26133275

ABSTRACT

The human FCGR2/3 locus, containing five highly homologous genes encoding the major IgG receptors, shows extensive copy number variation (CNV) associated with susceptibility to autoimmune diseases. Having genotyped >4000 individuals, we show that all CNV at this locus can be explained by nonallelic homologous recombination (NAHR) of the two paralogous repeats that constitute the majority of the locus, and describe four distinct CNV regions (CNRs) with a highly variable prevalence in the population. Apart from CNV, NAHR events also created several hitherto unidentified chimeric FCGR2 genes. These include an FCGR2A/2C chimeric gene that causes a decreased expression of FcγRIIa on phagocytes, resulting in a decreased production of reactive oxygen species in response to immune complexes, compared with wild-type FCGR2A. Conversely, FCGR2C/2A chimeric genes were identified to lead to an increased expression of FCGR2C. Finally, a rare FCGR2B null-variant allele was found, in which a polymorphic stop codon of FCGR2C is introduced into one FCGR2B gene, resulting in a 50% reduction in protein expression. Our study on CNRs and the chimeric genes is essential for the correct interpretation of association studies on FCGR genes as a determinant for disease susceptibility, and may explain some as yet unidentified extreme phenotypes of immune-mediated disease.


Subject(s)
Receptors, IgG/genetics , Alleles , DNA Copy Number Variations/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Homologous Recombination , Humans , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL