Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev E ; 108(2-1): 024601, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723703

ABSTRACT

Recently a two-dimensional chiral fluid was experimentally demonstrated. It was obtained from cubic-shaped hematite colloidal particles placed in a rotating magnetic field. Here we look at building blocks of that fluid by analyzing short hematite chain behavior in a rotating magnetic field. We find equilibrium structures of chains in static magnetic fields and observe chain dynamics in rotating magnetic fields. We find and experimentally verify that there are three planar motion regimes and one where the cube chain goes out of the plane of the rotating magnetic field. In this regime we observe interesting dynamics-the chain rotates slower than the rotating magnetic field. In order to catch up with the magnetic field, it rolls on an edge and through rotation in the third dimension catches up with the magnetic field. The same dynamics is also observable for a single cube when gravitational effects are explicitly taken into account.

2.
Phys Rev E ; 105(2-1): 024605, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291126

ABSTRACT

Hematite at room temperature is a weak ferromagnetic material. Its permanent magnetization is three orders smaller than for magnetite. Thus, hematite colloids allow us to explore a different physical range of particle interaction parameters compared to ordinary ferromagnetic particle colloids. In this paper we investigate a colloid consisting of hematite particles with cubic shape. We search for energetically favorable structures in an external magnetic field with analytical and numerical methods and molecular dynamics simulations and analyze whether it is possible to observe them in experiments. We find that energetically favorable configurations are observable only for short chains. Longer chains usually contain kinks which are formed in the process of chain formation due to the interplay of energy and thermal fluctuations as an individual cube can be in one of two alignments with an equal probability.

SELECTION OF CITATIONS
SEARCH DETAIL