Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleosides Nucleotides Nucleic Acids ; 26(10-12): 1559-63, 2007.
Article in English | MEDLINE | ID: mdl-18066826

ABSTRACT

Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined. In order to functionalize the bis-MGB conjugates, DNA-cleaving agents such as phenanthroline or bipyridine were attached. Effective site-specific cleavage of target DNA in the presence of Cu(2+) ions was observed.


Subject(s)
DNA/chemistry , Deoxyribonucleases/chemistry , Imidazoles/chemistry , Nucleic Acid Conformation , Pyrroles/chemistry , RNA, Catalytic/chemistry , Base Sequence , Binding Sites , Imidazoles/chemical synthesis , Phenanthrolines/chemistry , Pyrroles/chemical synthesis , RNA, Catalytic/chemical synthesis
2.
J Biomol Struct Dyn ; 25(1): 61-76, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17676939

ABSTRACT

Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.


Subject(s)
DNA , Nucleic Acid Conformation , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Amides/chemistry , Base Sequence , Circular Dichroism , DNA/chemistry , DNA/metabolism , Deoxyribonuclease I/metabolism , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Molecular Structure , Oligonucleotides/genetics , Organophosphates/chemistry
3.
Bioorg Med Chem Lett ; 15(16): 3720-4, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16005219

ABSTRACT

A series of 4 functionalized head-to-head-linked hairpin oligo(N-methylpyrrole) carboxamides with different linkers have been synthesized. Their ability to bind double-stranded DNA and sequence specificity were compared and the apparent Kd values of their DNA complexes were determined. These compounds, particularly those with iminodiacetic linkers, revealed a high affinity for DNA (Kd = 4.5-4.8 x 10(-9) M) and sequence specific recognition of 9-10 base pairs.


Subject(s)
DNA/chemistry , DNA/metabolism , HIV , Heparin/chemical synthesis , Heparin/metabolism , Nylons/chemical synthesis , Nylons/metabolism , Base Sequence , Binding Sites , DNA/chemical synthesis , HIV/genetics , Humans , Molecular Sequence Data , Molecular Structure , Nucleic Acid Conformation , Proviruses/chemistry , Proviruses/genetics
4.
Chem Biodivers ; 2(7): 936-52, 2005 Jul.
Article in English | MEDLINE | ID: mdl-17193185

ABSTRACT

New conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation. Higher melting temperatures (Tm), faster complex formation, and lower dissociation constants (Kd) of the triple helices (6-7 nM) were observed for complexes of MGB-oligo(2'-O-methylribonucleotide) conjugates with the target dsDNA compared to the nonconjugated individual components. Interaction of MGB moieties with the HIV proviral DNA fragment was indicated by UV/VIS absorption changes at 320 nm in the melting curves. The introduction of thymidine via a 3',3'-type 'inverted' phosphodiester linkage at the 3'-end of oligo(2'-O-methylribonucleotide) conjugates (3'-protection) had no strong influence on triplex formation, but slightly affected complex stability. At pH 6.0, when one or two hairpin MGBs were attached to the oligonucleotide, both triplex formation and minor-groove binding played important roles in complex formation. When two 'head-to-head' oligo(N-methylpyrrole) ligands were attached to the same terminal phosphate of the oligonucleotide or the linker, binding was observed at pH >7.5 and at high temperatures (up to 74 degrees). However, under these conditions, binding was retained only by the MGB part of the conjugate.


Subject(s)
DNA/chemistry , Imidazoles/chemistry , Oligoribonucleotides/chemistry , Base Sequence , Nucleic Acid Conformation , Nucleic Acid Hybridization , Oligoribonucleotides/metabolism
5.
Nucleosides Nucleotides Nucleic Acids ; 23(6-7): 953-68, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15560087

ABSTRACT

Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.


Subject(s)
DNA/metabolism , Oligonucleotides/metabolism , Chromatography, High Pressure Liquid , DNA/chemistry , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Denaturation , Oligonucleotides/chemistry
6.
Nucleosides Nucleotides Nucleic Acids ; 23(5): 789-803, 2004 May.
Article in English | MEDLINE | ID: mdl-15281367

ABSTRACT

Synthetic polycarboxamide minor groove binders (MGB) consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove in side-by-side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence-specific manner, similarly to the corresponding mono-conjugated hairpin structures. The series of conjugates with the general formula Oligo-(L-MGB-R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = -(Py)n-, -(Im)n- or -[(Py/Im)n-(CH2)3CONH-(Py/Im)n-] and I < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis-phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence-specific parallel ligand [-L(Py)4R] to monophosphoroamidate conjugate CGTTTATT-L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [-L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.


Subject(s)
DNA, Complementary/chemistry , Oligonucleotides/chemistry , Nucleic Acid Hybridization , Oligonucleotides/chemical synthesis , Oligonucleotides/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...