Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Heredity (Edinb) ; 100(5): 517-25, 2008 May.
Article in English | MEDLINE | ID: mdl-18285811

ABSTRACT

The occurrence of populations exhibiting high genetic diversity in predominantly selfing species remains a puzzling question, since under regular selfing genetic diversity is expected to be depleted at a faster rate than under outcrossing. Fine-scale population genetics approaches may help to answer this question. Here we study a natural population of the legume Medicago truncatula in which both the fine-scale spatial structure and the selfing rate are characterized using three different methods. Selfing rate estimates were very high ( approximately 99%) irrespective of the method used. A clear pattern of isolation by distance reflecting small seed dispersal distances was detected. Combining genotypic data over loci, we could define 34 multilocus genotypes. Among those, six highly inbred genotypes (lines) represented more than 75% of the individuals studied and harboured all the allelic variation present in the population. We also detected a large set of multilocus genotypes resembling recombinant inbred lines between the most frequent lines occurring in the population. This finding illustrates the importance of rare recombination in redistributing available allelic diversity into new genotypic combinations. This study shows how multilocus and fine-scale spatial analyses may help to understand the population history of self-fertilizing species, especially to make inferences about the relative role of foundation/migration and recombination events in such populations.


Subject(s)
Medicago truncatula/genetics , Alleles , Genes, Plant , Genotype , Heterozygote , Microsatellite Repeats/genetics
2.
J Evol Biol ; 20(6): 2349-60, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17956396

ABSTRACT

Despite its significance in evolutionary and conservation biology, few estimates of effective population size (N(e)) are available in plant species. Self-fertilization is expected to affect N(e), through both its effect on homozygosity and population dynamics. Here, we estimated N(e) using temporal variation in allele frequencies for two contrasted populations of the selfing annual Medicago truncatula: a large and continuous population and a subdivided population. Estimated N(e) values were around 5-10% of the population census size suggesting that other factors than selfing must contribute to variation in allele frequencies. Further comparisons between monolocus allelic variation and changes in the multilocus genotypic composition of the populations show that the local dynamics of inbred lines can play an important role in the fluctuations of allele frequencies. Finally, comparing N(e) estimates and levels of genetic variation suggest that H(e) is a poor estimator of the contemporaneous variance effective population size.


Subject(s)
Gene Frequency , Medicago truncatula/genetics , Evolution, Molecular , Genetic Variation , Medicago truncatula/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...