Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Intensive Care ; 13(1): 25, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37014580

ABSTRACT

BACKGROUND: The worldwide dissemination of extended spectrum beta-lactamase producing Enterobacteriales (ESBL-E) is of major concern. Microbiota may play a role in the host resistance to colonization with ESBL-E, but the underlying mechanisms remain unknown. We aimed to compare the gut microbiota composition between ESBL-producing E. coli or K. pneumoniae carriers and ESBL-E non-carriers according to the bacterial species. RESULTS: Among 255 patients included, 11 (4,3%) were colonized with ESBL-producing E. coli and 6 (2,4%) with ESBL-producing K. pneumoniae, which were compared with age- and sex-matched ESBL-E non carriers. While no significant differences were found between ESBL-producing E. coli carriers and non-carriers, gut bacteriobiota α-diversity was decreased in ESBL-K. pneumoniae faecal carriers compared both with non-carriers (p = 0.05), and with ESBL-producing E. coli carriers. The presence of Sellimonas intestinalis was associated with the absence of ESBL-producing E. coli fecal carriage. Campylobacter ureolyticus, Campylobacter hominis, bacteria belonging to Clostridium cluster XI and Saccharomyces sp. were associated with the absence of ESBL-producing K. pneumoniae faecal carriage. CONCLUSIONS: The composition of the gut microbiota differs between ESBL-producing E. coli and K. pneumoniae faecal carriers suggesting that microbial species should be taken into account when investigating the role of gut microbiota in resistance to gut colonization with ESBL-E. TRIAL REGISTRATION NUMBER: NCT04131569, date of registration: October 18, 2019.

2.
Microbiol Spectr ; : e0506222, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36976010

ABSTRACT

Chronic obstructive pulmonary disease (COPD) affects more than 200 million people worldwide. The chronic course of COPD is frequently worsened by acute exacerbations (AECOPD). Mortality in patients hospitalized for severe AECOPD remains dramatically high, and the underlying mechanisms are poorly understood. Lung microbiota is associated with COPD outcomes in nonsevere AECOPD, but no study specifically investigated severe AECOPD patients. The aim of this study is thus to compare lung microbiota composition between severe AECOPD survivors and nonsurvivors. Induced sputum or endotracheal aspirate was collected at admission from every consecutive severe AECOPD patient. After DNA extraction, the V3-V4 and ITS2 regions were amplified by PCR. Deep-sequencing was performed on a MiSeq sequencer (Illumina); the data were analyzed using DADA2 pipeline. Among 47 patients admitted for severe AECOPD, 25 (53%) with samples of sufficient quality were included: 21 of 25 (84%) survivors and 4 of 25 (16%) nonsurvivors. AECOPD nonsurvivors had lower α-diversities indices than survivors for lung mycobiota but not for lung bacteriobiota. Similar results were demonstrated comparing patients receiving invasive mechanical ventilation (n = 13 [52%]) with those receiving only noninvasive ventilation (n = 12 [48%]). Previous systemic antimicrobial therapy and long-term inhaled corticosteroid therapy could alter the lung microbiota composition in severe AECOPD patients. In acidemic AECOPD, lower lung mycobiota α-diversity is linked to the severity of the exacerbation, assessed by mortality and the requirement for invasive mechanical ventilation, whereas lung bacteriobiota α-diversity is not. This study encourages a multicenter cohort study investigating the role of lung microbiota, especially fungal kingdom, in severe AECOPD. IMPORTANCE In AECOPD with acidemia, more severe patients-i.e., nonsurvivors and patients requiring invasive mechanical ventilation-have lower lung mycobiota α-diversity than survivors and patients receiving only noninvasive ventilation, respectively. This study encourages a large multicenter cohort study investigating the role of lung microbiota in severe AECOPD and urges investigation of the role of the fungal kingdom in severe AECOPD.

SELECTION OF CITATIONS
SEARCH DETAIL
...