Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 7: 47, 2015.
Article in English | MEDLINE | ID: mdl-25945130

ABSTRACT

BACKGROUND: The birth weight of Black neonates in the United States is consistently smaller than that of their White counterparts. Epigenetic differences between the races may be involved in such disparities. The goal of these analyses was to model the role of IGF1 methylation in mediating the association between race and birth weight. Data was collected on a cohort of 87 live born infants. IGF1 methylation was measured in DNA isolated from the mononuclear fraction of umbilical cord blood collected after delivery. Quantitative, loci-specific methylation was assessed using the Infinium HumanMethylation27 BeadArray (Illumina Inc., San Diego, CA). Locus specific methylation of the IGF1 CpG site was validated on a subset of the original sample (N = 61) using pyrosequencing. Multiple linear regression was used to examine relationships between IGF1 methylation, race, and birth weight. A formal mediation analysis was then used to estimate the relationship of IGF1 methylation to race and birth weight. RESULTS: Black race was associated with a 7.45% decrease in gestational age-adjusted birth weight (aBW) (P = 0.04) and Black infants had significantly higher IGF1 methylation than non-Black infants (P < 0.05). A one standard deviation increase in IGF1 methylation was associated with a 3.32% decrease in aBW (P = 0.02). Including IGF1 methylation as a covariate, the effect of Black race on aBW was attenuated. A formal mediation analysis showed that the controlled direct effect of Black race on aBW was -6.26% (95% CI = -14.15, 1.06); the total effect of Black race on IGF1 methylation was -8.12% (95% CI = -16.08, -0.55); and the natural indirect effect of Black race on aBW through IGF1 methylation was -1.86% (95% CI = -5.22, 0.18). CONCLUSION: The results of the mediation analysis along with the multivariable regression analyses suggest that IGF1 methylation may partially mediate the relationship between Black race and aBW. Such epigenetic differences may be involved in racial disparities observed in perinatal outcomes.

2.
Front Hum Neurosci ; 8: 284, 2014.
Article in English | MEDLINE | ID: mdl-24860472

ABSTRACT

Epigenetic marks, including DNA methylation, are modifiable molecular factors that may underlie mental disorders, especially responses to trauma, including the development of and resilience to posttraumatic stress disorder (PTSD). Previous work has identified differential DNA methylation at CpG dinucleotide sites genomewide between trauma exposed individuals with and without PTSD, suggesting a role for epigenetic potential-the capacity to epigenetically regulate behavior and physiology in response to lived experiences. The human species is characterized by an increased period of adaptive plasticity during brain development. The evolutionary history of epigenetic potential in relation to adaptive plasticity is currently unknown. Using phylogenetic methods and functional annotation analyses, we trace the evolution of over 7000 CpG dinucleotides, including 203 associated with PTSD, during the descent of humans in during mammalian evolution and characterize the biological significance of this evolution. We demonstrate that few (7%) PTSD-associated CpG sites are unique to humans, while the vast majority of sites have deep evolutionary origins: 73 and 93% were unambiguously present in the last common ancestor of humans/orangutans and humans/chimpanzees, respectively. Genes proximal to evolved PTSD-associated CpG sites revealed significant enrichment for immune function during recent human evolution and regulation of gene expression during more ancient periods of human evolution. Additionally, 765 putative transcription factor binding motifs (TFBMs) were identified that overlap with PTSD-associated CpG sites. Elucidation of the evolutionary history of PTSD-associated CpG sites may provide insights into the function and origin of epigenetic potential in trauma responses, generally, and PTSD, specifically. The human capacity to respond to trauma with stable physiologic and behavioral changes may be due to epigenetic potentials that are shared among many mammalian species.

3.
Depress Anxiety ; 30(12): 1151-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23959810

ABSTRACT

There are well-established sex differences in the prevalence of certain mental disorders. Work in animal models has provided us with an emerging understanding of the role that epigenetic factors play in establishing sex differences in the brain during development. Similarly, work in animal models, and a more limited but growing literature based on human studies, has demonstrated that DNA methylation (DNAm) changes occur in response to environmental stress, with some of these occurring in a sex-specific manner. In this review, we explore whether DNAm plays a role in contributing to the observed sex differences in prevalence of mental disorders in which stress contributes significantly to their etiologies, specifically posttraumatic stress disorder (PTSD) and depression. We propose that investigating sex differences in DNAm among genes known to influence brain development may help to shed light on the sexually dimorphic risk for, or resilience to, developing PTSD and depression.


Subject(s)
DNA Methylation/physiology , Depressive Disorder/genetics , Epigenesis, Genetic/physiology , Stress Disorders, Post-Traumatic/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Resilience, Psychological , Risk , Sex Factors , Stress, Psychological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...