Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Biol Insights ; 10: 27-35, 2016.
Article in English | MEDLINE | ID: mdl-27147821

ABSTRACT

From 2003 to 2013, Indonesia had the highest number of avian influenza A cases in humans, with 192 cases and 160 fatalities. Avian influenza is caused by influenza virus type A, such as subtype H5N1. This virus has two glycoproteins: hemagglutinin and neuraminidase, which will become the primary target to be neutralized by vaccine. Vaccine is the most effective immunologic intervention. In this study, we use the epitope-based vaccine design from hemagglutinin and neuraminidase of H5N1 Indonesian strain virus by using immunoinformatics approach in order to predict the binding of B-cell and T-cell epitopes (class I and class II human leukocyte antigen [HLA]). BCPREDS was used to predict the B-cell epitope. Propred, Propred I, netMHCpan, and netMHCIIpan were used to predict the T-cell epitope. Two B-cell epitopes of hemagglutinin candidates and one B-cell epitope of neuraminidase candidates were obtained to bind T-cell CD4(+) (class II HLA), and also five T-cell epitope hemagglutinin and four T-cell epitope neuraminidase were obtained to bind T-cell CD8(+) (class I HLA). The visualization of epitopes was done using MOE 2008.10. It shows that the binding affinity of epitope-HLA was based on minimum binding free energy (ΔG binding). Based on this result, visualization, and dynamic simulation, four hemagglutinin epitopes (MEKIVLLLA, CPYLGSPSF, KCQTPMGAI, and IGTSTLNQR) and two neuraminidase epitopes (NPNQKIITI and CYPDAGEIT) were computed as having the best binding affinity from HLA ligand. The results mentioned above are from in silico experiments and need to be validated using wet experiment.

2.
Acta Pharm ; 64(2): 157-72, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24914717

ABSTRACT

It is critical to seek potential alternative treatments for H1N1 infections by inhibiting neuraminidase-1 enzyme. One of the viable options for inhibiting the activity of neuraminidase- 1 is peptide drug design. In order to increase peptide stability, cyclization is necessary to prevent its digestion by protease enzyme. Cyclization of peptide ligands by formation of disulfide bridges is preferable for designing inhibitors of neuraminidase-1 because of their high activity and specificity. Here we designed ligands by using molecular docking, drug scan and dynamics computational methods. Based on our docking results, short polypeptides of cystein-arginine-methionine-tyrosine- -proline-cysteine (CRMYPC) and cysteine-arginine-aspargine- phenylalanine-proline-cysteine (CRNFPC) have good residual interactions with the target and the binding energy ΔGbinding of -31.7402 and -31.0144 kcal mol-1, respectively. These values are much lower than those of the standards, and it means that both ligands are more accessible to ligand-receptor binding. Based on drug scan results, both of these ligands are neither mutagenic nor carcinogenic. They also show good oral bioavailability. Moreover, both ligands show relatively stable molecular dynamics progression of RMSD vs. time plot. However, based on our metods, the CRMYPC ligand has sufficient hydrogen bonding interactions with residues of the active side of neuraminidase-1 and can be therefore proposed as a potential inhibitor of neuraminidase-1.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Neuraminidase/antagonists & inhibitors , Drug Design , Hydrogen Bonding , Ligands , Models, Molecular , Molecular Docking Simulation/methods , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...