Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611046

ABSTRACT

Bariatric surgery is associated with improved outcomes for several cancers, including breast cancer (BC), although the mechanisms mediating this protection are unknown. We hypothesized that elevated bile acid pools detected after bariatric surgery may be factors that contribute to improved BC outcomes. Patients with greater expression of the bile acid receptor FXR displayed improved survival in specific aggressive BC subtypes. FXR is a nuclear hormone receptor activated by primary bile acids. Therefore, we posited that activating FXR using an established FDA-approved agonist would induce anticancer effects. Using in vivo and in vitro approaches, we determined the anti-tumor potential of bile acid receptor agonism. Indeed, FXR agonism by the bile acid mimetic known commercially as Ocaliva ("OCA"), or Obeticholic acid (INT-747), significantly reduced BC progression and overall tumor burden in a pre-clinical model. The transcriptomic analysis of tumors in mice subjected to OCA treatment revealed differential gene expression patterns compared to vehicle controls. Notably, there was a significant down-regulation of the oncogenic transcription factor MAX (MYC-associated factor X), which interacts with the oncogene MYC. Gene set enrichment analysis (GSEA) further demonstrated a statistically significant downregulation of the Hallmark MYC-related gene set (MYC Target V1) following OCA treatment. In human and murine BC analyses in vitro, agonism of FXR significantly and dose-dependently inhibited proliferation, migration, and viability. In contrast, the synthetic agonism of another common bile acid receptor, the G protein-coupled bile acid receptor TGR5 (GPBAR1) which is mainly activated by secondary bile acids, failed to significantly alter cancer cell dynamics. In conclusion, agonism of FXR by primary bile acid memetic OCA yields potent anti-tumor effects potentially through inhibition of proliferation and migration and reduced cell viability. These findings suggest that FXR is a tumor suppressor gene with a high potential for use in personalized therapeutic strategies for individuals with BC.

2.
Sci Adv ; 9(51): eadd3231, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134280

ABSTRACT

Mononuclear phagocytes (MPs) play a crucial role in tissue homeostasis; however, MPs also contribute to tumor progression and resistance to immune checkpoint blockade (ICB). Targeting MPs could be an effective strategy to enhance ICB efficacy. We report that protein kinase C delta (PKCδ), a serine/threonine kinase, is abundantly expressed by MPs in human and mouse tumors. PKCδ-/- mice displayed reduced tumor progression compared to wild types, with increased response to anti-PD-1. Tumors from PKCδ-/- mice demonstrated TH1-skewed immune response including increased antigen presentation and T cell activation. Depletion of MPs in vivo altered tumor growth in control but not PKCδ-/- mice. Coinjection of PKCδ-/- M2-like macrophages with cancer cells into wild-type mice markedly delayed tumor growth and significantly increased intratumoral T cell activation compared to PKCδ+/+ controls. PKCδ deficiency reprogrammed MPs by activating type I and type II interferon signaling. Thus, PKCδ might be targeted to reprogram MPs to augment ICB efficacy.


Subject(s)
Neoplasms , Protein Kinase C-delta , Mice , Humans , Animals , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , Signal Transduction , Neoplasms/therapy , Immunotherapy , Phagocytes
3.
Cancer Metastasis Rev ; 41(3): 673-695, 2022 09.
Article in English | MEDLINE | ID: mdl-35870055

ABSTRACT

Obesity is a complex metabolic condition considered a worldwide public health crisis, and a deeper mechanistic understanding of obesity-associated diseases is urgently needed. Obesity comorbidities include many associated cancers and are estimated to account for 20% of female cancer deaths in the USA. Breast cancer, in particular, is associated with obesity and is the focus of this review. The exact causal links between obesity and breast cancer remain unclear. Still, interactions have emerged between body mass index, tumor molecular subtype, genetic background, and environmental factors that strongly suggest obesity influences the risk and progression of certain breast cancers. Supportive preclinical research uses various diet-induced obesity models to demonstrate that weight loss, via dietary interventions or changes in energy expenditure, reduces the onset or progression of breast cancers. Ongoing and future studies are now aimed at elucidating the underpinning mechanisms behind weight-loss-driven observations to improve therapy and outcomes in patients with breast cancer and reduce risk. This review aims to summarize the rapidly emerging literature on obesity and weight loss strategies with a focused discussion of bariatric surgery in both clinical and preclinical studies detailing the complex interactions between metabolism, immune response, and immunotherapy in the setting of obesity and breast cancer.


Subject(s)
Bariatric Surgery , Breast Neoplasms , Bariatric Surgery/adverse effects , Breast Neoplasms/etiology , Energy Metabolism , Female , Humans , Obesity/complications , Obesity/surgery , Weight Loss
4.
Elife ; 112022 07 01.
Article in English | MEDLINE | ID: mdl-35775614

ABSTRACT

Bariatric surgery is a sustainable weight loss approach, including vertical sleeve gastrectomy (VSG). Obesity exacerbates tumor growth, while diet-induced weight loss impairs progression. It remains unknown how bariatric surgery-induced weight loss impacts cancer progression or alters response to therapy. Using a pre-clinical model of obesity followed by VSG or diet-induced weight loss, breast cancer progression and immune checkpoint blockade therapy were investigated. Weight loss by VSG or weight-matched dietary intervention before tumor engraftment protected against obesity-exacerbated tumor progression. However, VSG was not as effective as diet in reducing tumor burden despite achieving similar weight and adiposity loss. Leptin did not associate with changes in tumor burden; however, circulating IL-6 was elevated in VSG mice. Uniquely, VSG tumors displayed elevated inflammation and immune checkpoint ligand PD-L1+ myeloid and non-immune cells. VSG tumors also had reduced T lymphocytes and markers of cytolysis, suggesting an ineffective anti-tumor microenvironment which prompted investigation of immune checkpoint blockade. While obese mice were resistant to immune checkpoint blockade, anti-PD-L1 potently impaired tumor progression after VSG through improved anti-tumor immunity. Thus, in formerly obese mice, surgical weight loss followed by immunotherapy reduced breast cancer burden. Finally, we compared transcriptomic changes in adipose tissue after bariatric surgery from patients and mouse models. A conserved bariatric surgery-associated weight loss signature (BSAS) was identified which significantly associated with decreased tumor volume. Findings demonstrate conserved impacts of obesity and bariatric surgery-induced weight loss pathways associated with breast cancer progression.


As the number of people classified as obese rises globally, so do obesity-related health risks. Studies show that people diagnosed with obesity have inflammation that contributes to tumor growth and their immune system is worse at detecting cancer cells. But weight loss is not currently used as a strategy for preventing or treating cancer. Surgical procedures for weight loss, also known as 'bariatric surgeries', are becoming increasingly popular. Recent studies have shown that individuals who lose weight after these treatments have a reduced risk of developing tumors. But how bariatric surgery directly impacts cancer progression has not been well studied: does it slow tumor growth or boost the anti-tumor immune response? To answer these questions, Sipe et al. compared breast tumor growth in groups of laboratory mice that were obese due to being fed a high fat diet. The first group of mice lost weight after undergoing a bariatric surgery in which part of their stomach was removed. The second lost the same amount of weight but after receiving a restricted diet, and the third underwent a fake surgery and did not lose any weight. The experiments found that surgical weight loss cuts breast cancer tumor growth in half compared with obese mice. But mice who lost the same amount of weight through dietary restrictions had even less tumor growth than surgically treated mice. The surgically treated mice who lost weight had more inflammation than mice in the two other groups, and had increased amounts of proteins and cells that block the immune response to tumors. Giving the surgically treated mice a drug that enhances the immune system's ability to detect and destroy cancer cells reduced inflammation and helped shrink the mice's tumors. Finally, Sipe et al. identified 54 genes which were turned on or off after bariatric surgery in both mice and humans, 11 of which were linked with tumor size. These findings provide crucial new information about how bariatric surgery can impact cancer progression. Future studies could potentially use the conserved genes identified by Sipe et al. to develop new ways to stimulate the anti-cancer benefits of weight loss without surgery.


Subject(s)
Bariatric Surgery , Neoplasms , Animals , Bariatric Surgery/adverse effects , Gastrectomy/adverse effects , Immune Checkpoint Inhibitors , Mice , Mice, Obese , Neoplasms/surgery , Obesity/metabolism , Weight Loss
5.
Cancer Lett ; 531: 98-108, 2022 04 10.
Article in English | MEDLINE | ID: mdl-35074498

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are an immature innate cell population that expands in pathological conditions such as cancer and suppresses T cells via production of immunosuppressive factors. Conversely, efficient cytotoxic T cell priming is dependent on the ability of antigen-presenting cells (APCs) to cross-present tumor antigens to CD8+ T cells, a process that requires a specific subtype of dendritic cells (DCs) called conventional DC1 (cDC1) which are often dysfunctional in cancer. One way to activate cDC1 is ligation of CD40 which is abundantly expressed by myeloid cells and its agonism leads to myeloid cell activation. Thus, targeting MDSCs while simultaneously expanding cross-presenting DCs represents a promising strategy that, when combined with agonistic CD40, may result in long-lasting protective immunity. In this study, we investigated the effect of PKC agonists PEP005 and prostratin on MDSC expansion, differentiation, and recruitment to the tumor microenvironment. Our findings demonstrate that PKC agonists decreased MDSC expansion from hematopoietic progenitors and induced M-MDSC differentiation to an APC-like phenotype that expresses cDC1-related markers via activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Simultaneously, PKC agonists favored cDC1 expansion at the expense of cDC2 and plasmacytoid DCs (pDC). Functionally, PKC agonists blunted MDSC suppressive activity and enhanced MDSC cross-priming capacity both in vitro and in vivo. Finally, combination of PKC agonism with agonistic CD40 mAb resulted in a marked reduction in tumor growth with a significant increase in intratumoral activated CD8+ T cells and tissue-resident memory CD8+ T cells in a syngeneic breast cancer mouse model. In sum, this work proposes a novel promising strategy to simultaneously target MDSCs and promote APC function that may have highly impactful clinical relevance in cancer patients.


Subject(s)
Breast Neoplasms , Cross-Priming , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , CD40 Antigens/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells , Female , Humans , Immunity, Innate , Mice , Tumor Microenvironment
6.
Cell Rep ; 35(12): 109285, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34161764

ABSTRACT

Immune checkpoint blockade (ICB) has improved outcomes in some cancers. A major limitation of ICB is that most patients fail to respond, which is partly attributable to immunosuppression. Obesity appears to improve immune checkpoint therapies in some cancers, but impacts on breast cancer (BC) remain unknown. In lean and obese mice, tumor progression and immune reprogramming were quantified in BC tumors treated with anti-programmed death-1 (PD-1) or control. Obesity augments tumor incidence and progression. Anti-PD-1 induces regression in lean mice and potently abrogates progression in obese mice. BC primes systemic immunity to be highly responsive to obesity, leading to greater immunosuppression, which may explain greater anti-PD-1 efficacy. Anti-PD-1 significantly reinvigorates antitumor immunity despite persistent obesity. Laminin subunit beta-2 (Lamb2), downregulated by anti-PD-1, significantly predicts patient survival. Lastly, a microbial signature associated with anti-PD-1 efficacy is identified. Thus, anti-PD-1 is highly efficacious in obese mice by reinvigorating durable antitumor immunity. VIDEO ABSTRACT.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Obesity/complications , Tumor Microenvironment/immunology , Animals , Breast Neoplasms/complications , Breast Neoplasms/genetics , Disease Progression , Female , Gastrointestinal Microbiome , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunosuppression Therapy , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Estrogen/metabolism , Spleen/pathology , Tumor Burden , Tumor Microenvironment/drug effects
7.
Immunol Rev ; 295(1): 220-239, 2020 05.
Article in English | MEDLINE | ID: mdl-32320071

ABSTRACT

Bile acids (BAs) are known facilitators of nutrient absorption but recent paradigm shifts now recognize BAs as signaling molecules regulating both innate and adaptive immunity. Bile acids are synthesized from cholesterol in the liver with subsequent microbial modification and fermentation adding complexity to pool composition. Bile acids act on several receptors such as Farnesoid X Receptor and the G protein-coupled BA receptor 1 (TGR5). Interestingly, BA receptors (BARs) are expressed on immune cells and activation either by BAs or BAR agonists modulates innate and adaptive immune cell populations skewing their polarization toward a more tolerogenic anti-inflammatory phenotype. Intriguingly, recent evidence also suggests that BAs promote anti-tumor immune response through activation and recruitment of tumoricidal immune cells such as natural killer T cells. These exciting findings have redefined BA signaling in health and disease wherein they may suppress inflammation on the one hand, yet promote anti-tumor immunity on the other hand. In this review, we provide our readers with the most recent understanding of the interaction of BAs with the host microbiome, their effect on innate and adaptive immunity in health and disease with a special focus on obesity, bariatric surgery-induced weight loss, and immune checkpoint blockade in cancer.


Subject(s)
Bile Acids and Salts/metabolism , Microbiota , Obesity/etiology , Obesity/metabolism , Animals , Bariatric Surgery , Biomarkers , Disease Susceptibility , Energy Metabolism/drug effects , Gastrointestinal Microbiome/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Proteins/metabolism , Immunomodulation/drug effects , Microbiota/immunology , Neoplasms/complications , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Obesity/complications , Obesity/surgery , Prognosis , Signal Transduction/drug effects , Treatment Outcome
8.
J Biol Chem ; 288(25): 18381-91, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23637227

ABSTRACT

Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1(-/-) mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1(-/-) pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1(-/-) mice. Keratinocytes isolated from the skin of Sgpp1(-/-) pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.


Subject(s)
Cell Differentiation/genetics , Epidermis/metabolism , Keratinocytes/metabolism , Membrane Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Animals , Animals, Newborn , Cells, Cultured , Cluster Analysis , Epidermis/embryology , Epidermis/growth & development , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeostasis/genetics , Keratinocytes/cytology , Lysophospholipids/metabolism , Male , Membrane Proteins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Phosphoric Monoester Hydrolases/deficiency , Reverse Transcriptase Polymerase Chain Reaction , Skin/embryology , Skin/growth & development , Skin/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...