Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 12(17): 4024-33, 2016 05 07.
Article in English | MEDLINE | ID: mdl-26997621

ABSTRACT

Positively charged layered double hydroxide particles composed of Mg(2+) and Al(3+) layer-forming cations and NO3(-) charge compensating anions (MgAl-NO3-LDH) were synthesized and the colloidal stability of their aqueous suspensions was investigated in the presence of inorganic anions of different charges. The formation of the layered structure was confirmed by X-ray diffraction, while the charging and aggregation properties were explored by electrophoresis and light scattering. The monovalent anions adsorb on the oppositely charged surface to a different extent according to their hydration state leading to the Cl(-) > NO3(-) > SCN(-) > HCO3(-) order in surface charge densities. The ions on the right side of the series induce the aggregation of MgAl-NO3-LDH particles at lower concentrations, whereas in the presence of the left ones, the suspensions are stable even at higher salt levels. The adsorption of multivalent anions gave rise to charge neutralization and charge reversal at appropriate concentrations. For some di, tri and tetravalent ions, charge reversal resulted in restabilization of the suspensions in the intermediate salt concentration regime. Stable samples were also observed at low salt levels. Particle aggregation was fast near the charge neutralization point and at high concentrations. These results, which evidence the colloidal stability of MgAl-NO3-LDH in the presence of various anions, are of prime fundamental interest. These are also critical for applications to develop stable suspensions of primary particles for water purification processes, with the aim of the removal of similar anions by ion exchange.

2.
Langmuir ; 31(46): 12609-17, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26528779

ABSTRACT

The colloidal behavior of layered double hydroxide nanoparticles containing Mg(2+) and Al(3+) ions as intralayer cations and nitrates as counterions (MgAl-NO3-LDH) was studied in the presence of a short statistical copolymer of acrylic acid (AA) and butyl acrylate (BA) terminated with 4-cyano-4-thiothiopropylsulfanyl pentanoic acid (CTPPA) (P(AA7.5-stat-BA7.5)-CTPPA) synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Surface charge properties and aggregation of the particles were investigated by electrophoresis and dynamic light scattering (DLS), respectively. The negatively charged P(AA7.5-stat-BA7.5)-CTPPA adsorbed strongly on the oppositely charged particles, leading to charge neutralization at the isoelectric point (IEP) and charge reversal at higher copolymer concentrations. The dispersions were unstable, i.e., fast aggregation of the MgAl-NO3-LDH occurred near the IEP while high stability was achieved at higher P(AA7.5-stat-BA7.5)-CTPPA concentrations. Atomic force (AFM) and transmission electron (TEM) microscopy imaging revealed that the platelets preferentially adopted a face-to-face orientation in the aggregates. While the stability of the bare particles was very sensitive to ionic strength, the P(AA7.5-stat-BA7.5)-CTPPA copolymer-coated particles were extremely stable even at high salt levels. Accordingly, the limited colloidal stability of bare MgAl-NO3-LDH dispersions was significantly improved by adding an appropriate amount of P(AA7.5-stat-BA7.5)-CTPPA to the suspension.


Subject(s)
Hydroxides/chemistry , Nanoparticles/chemistry , Polymerization , Polymers/chemistry , Acrylates/chemistry , Adsorption , Colloids , Models, Molecular , Molecular Conformation , Surface Properties
3.
Langmuir ; 29(43): 13315-21, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24083485

ABSTRACT

Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...