Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 6(1): 168, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37696899

ABSTRACT

Waist-to-hip circumference ratio (WHR) is now recognized as among the strongest shape biometrics linked with health outcomes, although use of this phenotypic marker remains limited due to the inaccuracies in and inconvenient nature of flexible tape measurements when made in clinical and home settings. Here we report that accurate and reliable WHR estimation in adults is possible with a smartphone application based on novel computer vision algorithms. The developed application runs a convolutional neural network model referred to as MeasureNet that predicts a person's body circumferences and WHR using front, side, and back color images. MeasureNet bridges the gap between measurements conducted by trained professionals in clinical environments, which can be inconvenient, and self-measurements performed by users at home, which can be unreliable. MeasureNet's accuracy and reliability is evaluated using 1200 participants, measured by a trained staff member. The developed smartphone application, which is a part of Amazon Halo, is a major advance in digital anthropometry, filling a long-existing gap in convenient, accurate WHR measurement capabilities.

2.
NPJ Digit Med ; 5(1): 79, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768575

ABSTRACT

Body composition is a key component of health in both individuals and populations, and excess adiposity is associated with an increased risk of developing chronic diseases. Body mass index (BMI) and other clinical or commercially available tools for quantifying body fat (BF) such as DXA, MRI, CT, and photonic scanners (3DPS) are often inaccurate, cost prohibitive, or cumbersome to use. The aim of the current study was to evaluate the performance of a novel automated computer vision method, visual body composition (VBC), that uses two-dimensional photographs captured via a conventional smartphone camera to estimate percentage total body fat (%BF). The VBC algorithm is based on a state-of-the-art convolutional neural network (CNN). The hypothesis is that VBC yields better accuracy than other consumer-grade fat measurements devices. 134 healthy adults ranging in age (21-76 years), sex (61.2% women), race (60.4% White; 23.9% Black), and body mass index (BMI, 18.5-51.6 kg/m2) were evaluated at two clinical sites (N = 64 at MGH, N = 70 at PBRC). Each participant had %BF measured with VBC, three consumer and two professional bioimpedance analysis (BIA) systems. The PBRC participants also had air displacement plethysmography (ADP) measured. %BF measured by dual-energy x-ray absorptiometry (DXA) was set as the reference against which all other %BF measurements were compared. To test our scientific hypothesis we run multiple, pair-wise Wilcoxon signed rank tests where we compare each competing measurement tool (VBC, BIA, …) with respect to the same ground-truth (DXA). Relative to DXA, VBC had the lowest mean absolute error and standard deviation (2.16 ± 1.54%) compared to all of the other evaluated methods (p < 0.05 for all comparisons). %BF measured by VBC also had good concordance with DXA (Lin's concordance correlation coefficient, CCC: all 0.96; women 0.93; men 0.94), whereas BMI had very poor concordance (CCC: all 0.45; women 0.40; men 0.74). Bland-Altman analysis of VBC revealed the tightest limits of agreement (LOA) and absence of significant bias relative to DXA (bias -0.42%, R2 = 0.03; p = 0.062; LOA -5.5% to +4.7%), whereas all other evaluated methods had significant (p < 0.01) bias and wider limits of agreement. Bias in Bland-Altman analyses is defined as the discordance between the y = 0 axis and the regressed line computed from the data in the plot. In this first validation study of a novel, accessible, and easy-to-use system, VBC body fat estimates were accurate and without significant bias compared to DXA as the reference; VBC performance exceeded those of all other BIA and ADP methods evaluated. The wide availability of smartphones suggests that the VBC method for evaluating %BF could play an important role in quantifying adiposity levels in a wide range of settings.Trial registration: ClinicalTrials.gov Identifier: NCT04854421.

SELECTION OF CITATIONS
SEARCH DETAIL
...