Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 9: 765499, 2022.
Article in English | MEDLINE | ID: mdl-35242793

ABSTRACT

Koumiss is a traditional fermented dairy product with health and medicinal benefits. It is very popular in the Inner Mongolia Autonomous Region of China. The results of relevant studies have shown that koumiss can regulate the gastrointestinal environment, improve the absorption of nutrients, improve the body's intolerance to lactose, enhance the body's immunity, prevent scurvy and atherosclerosis, and aid in the treatment of tuberculosis. However, there are no systematic reports on the effects of koumiss on immunity. In this study, we aimed to decipher the effects of koumiss on intestinal immune modulation. We used liquid chromatography-tandem mass spectrometry (LC-MS) analysis to determine the composition of Koumiss. Using Compound Discoverer software, we compared the mass spectrometry data with the compound information in the online databases ChemSpider and mzCloud to intelligently identify the main chemical components of koumiss. Additionally, we used Mass Frontier small molecule fragmentation libraryTM to determine the structure of fragment ions. A total of 21 components were identified, which clarified the chemical basis of koumiss. These 21 compounds were then used to perform molecular docking with immune-related targets, such as TNF, IL2, IL10, etc. The results indicated good docking activity between most of the compounds and the targets. Then, an immunosuppressive rat model was used to determine the therapeutic effect of koumiss. The results of this study showed that koumiss could, to a certain extent, correct the atrophy of the thymus and spleen in immunosuppressed model rats. The number of leukocytes, lymphocytes, and the CD4+/CD8+ ratio of peripheral blood lymphocytes was also increased. In addition, it could effectively improve the structure of the small intestinal mucosa, which shows that koumiss has a positive effect on the intestinal immune function of immunosuppressed rats. These findings provide an experimental basis for the development and utilization of koumiss as a therapeutic product.

3.
Front Pharmacol ; 12: 651926, 2021.
Article in English | MEDLINE | ID: mdl-34220497

ABSTRACT

Cardiovascular disease is the main cause of death worldwide, and traditional cardiovascular risk factors cannot fully explain the occurrence of the disease. In recent years, the relationship between gut microbiota and its metabolites and cardiovascular disease has been a hot study topic. The changes in gut microbiota and its metabolites are related to the occurrence and development of atherosclerosis, myocardial infarction, heart failure, and hypertension. The mechanisms by which gut microbiota and its metabolites influence cardiovascular disease have been reported, although not comprehensively. Additionally, following ingestion, flavonoids are decomposed into phenolic acids that are more easily absorbed by the body after being processed by enzymes produced by intestinal microorganisms, which increases flavonoid bioavailability and activity, consequently affecting the onset of cardiovascular disease. However, flavonoids can also inhibit the growth of harmful microorganisms, promote the proliferation of beneficial microorganisms, and maintain the balance of gut microbiota. Hence, it is important to study the relationship between gut microbiota and flavonoids to elucidate the protective effects of flavonoids in cardiovascular diseases. This article will review the role and mechanism of gut microbiota and its metabolites in the occurrence and development of atherosclerosis, myocardial infarction, heart failure, and hypertension. It also discusses the potential value of flavonoids in the prevention and treatment of cardiovascular disease following their transformation through gut microbiota metabolism.

4.
PLoS One ; 12(12): e0189785, 2017.
Article in English | MEDLINE | ID: mdl-29267332

ABSTRACT

Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.


Subject(s)
Flax/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , High-Throughput Nucleotide Sequencing , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...