Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 126(51): 10933-10947, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36520675

ABSTRACT

It is known that oxygen (O2) stops radical polymerization (RP). Here, it was found that the reaction turn-off occurs abruptly at a threshold concentration of O2, [O2]t, for both free RP and reversible addition-fragmentation chain-transfer polymerization (RAFT). In some reactions, there was a spontaneous re-start of conversion. Three cases were investigated: RP of (i) acrylamide (Am) and (ii) sodium styrene sulfonate (SS) and (iii) Am RAFT polymerization. A controlled flow of O2 into the reactor was employed. An abrupt turn-off was observed in all cases, where polymerization stops sharply at [O2]t and remains stopped when [O2] > [O2]t. In (i), Am acts as a catalytic radical-transfer agent during conversion plateau, eliminating excess [O2], and polymerization spontaneously resumes at [O2]t. In no reaction, the initiator alone was capable of eliminating O2. N2 purge was needed to re-start reactions (ii) and (iii). For (i) and (ii), while [O2] < [O2]t, O2 acts a chain termination agent, reducing the molecular weight (Mw) and reduced viscosity (RV). O2 acts as an inhibitor for [O2] > [O2]t in all cases. The radical-transfer rates from Am* and SS* to O2 are >10,000× higher than the initial chain propagation step rates for Am and SS, which causes [O2]t at very low [O2].


Subject(s)
Acrylamide , Styrene , Polymerization , Free Radicals , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...