Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 148(13): 134908, 2018 Apr 07.
Article in English | MEDLINE | ID: mdl-29626876

ABSTRACT

The properties of mixtures of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], with poly(ethyleneglycol) dimethyl ether, PEO, were described as a function of PEO chain size by molecular dynamics simulations. Both PEO chain size and mixture composition revealed to play a significant role in determining the structure and the dynamics of the fluids. The remarkably higher viscosity observed for mixtures composed by 0.25 mole fraction of PEO was attributed to the increase in the gauche population of OCCO dihedral of the polyether of longer chains. The negative solvation enthalpy (ΔsolH < 0) and entropy (ΔsolS < 0) revealed a favorable CO2 absorption by the neat and mixture systems. The CO2 absorption was higher in neat PEO, particularly considering longer chains. The gas solubility in the mixtures presented intermediate values in comparison to the neat PEO and neat ionic liquid. The CO2 solutions had their structures discussed in the light of the calculated radial and spatial distribution functions.

2.
Phys Chem Chem Phys ; 18(41): 28901-28910, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27723855

ABSTRACT

An investigation comprising experimental techniques (absorption capacity of SO2 and vibrational spectroscopy) and molecular simulations (thermodynamics, structure, and dynamics) has been performed for the polymer poly(ethylene oxide) (PEO), the ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4111][Tf2N]) and their mixtures as sulfur dioxide (SO2) absorbing materials. The polymer PEO has higher capacity to absorb SO2 than the neat ionic liquid, whereas the mixtures presented intermediary absorption capacities. The band assigned to the symmetric stretching band of SO2 at ca. 1140 cm-1, which is considered a spectroscopic probe for the strength of SO2 interactions with its neighborhood, shifts to lower wavenumbers as more negative total interaction energy values of SO2 were evaluated from the simulations. The solvation free energy of SO2, ΔGsol, correlates linearly with the absorption capacity of SO2. The negative values of ΔGsol are due to negative and positive values of enthalpy and entropy, respectively. In the ionic liquid, SO2 weakens the cation-anion interactions, whereas in the mixture with a high content of PEO these interactions are slightly increased. Such effects were correlated with the relative population of cisoid and transoid conformers of Tf2N anions as revealed by Raman spectroscopy. Moreover, the presence of SO2 in the systems provokes the increase of diffusion coefficients of the absorbing species in comparison with the systems without the gas. Proper to the slow dynamics of the polymer, the diffusion coefficient of ions and SO2 diminishes with the increase of the PEO content.

3.
Langmuir ; 32(13): 3234-41, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26982820

ABSTRACT

A major challenge in the design of biocidal drugs is to identify compounds with potential action on microorganisms and to understand at the molecular level their mechanism of action. In this study, thymol, a monoterpenoid found in the oil of leaves of Lippia sidoides with possible action in biological surfaces, was incorporated in lipid monolayers at the air-water interface that represented cell membrane models. The interaction of thymol with dipalmitoylphosphatidylcholine (DPPC) at the air-water interface was investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM), polarization-modulation reflection-absorption spectroscopy (PM-IRRAS), and molecular dynamics simulation. Thymol expands DPPC monolayers, decreases their surface elasticity, and changes the morphology of the lipid monolayer, which evidence the incorporation of this compound in the lipid Langmuir film. Such incorporation could be corroborated by PM-IRRAS since some specific bands for DPPC were changed upon thymol incorporation. Furthermore, potential of mean force obtained by molecular dynamics simulations indicates that the most stable position of the drug along the lipid film is near the hydrophobic regions of DPPC. These results may be useful to understand the interaction between thymol and cell membranes during biochemical phenomena, which may be associated with its pharmaceutical properties at the molecular level.

4.
J Phys Condens Matter ; 26(28): 284107, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24920411

ABSTRACT

We perform molecular dynamics simulations of tetraalkylammonium ionic liquids confined in the interlayer of montmorillonite (MMT). We study the structure and energetics of the systems, which consist of cations with two different alkyl chain lengths and several ionic liquid concentrations. The results we obtained for the structure, namely the presence of a strong layering in all systems and the formation of nonpolar domains with interdigitated alkyl chains in some cases, are largely consistent with previous surface force balance experiments performed on similar systems. Finally, we show that swelling of the organo-modified MMT by a large amount of ionic liquid seems energetically favorable in all cases.


Subject(s)
Bentonite/chemistry , Ionic Liquids/chemistry , Models, Chemical , Molecular Dynamics Simulation , Quaternary Ammonium Compounds/chemistry , Computer Simulation , Molecular Conformation , Surface Properties
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 122: 469-75, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24326263

ABSTRACT

Hybrid organic-inorganic material containing Laponite clay and ionic liquids forming cations have been prepared and characterized by FT-Raman spectroscopy, X-ray diffraction, and thermal analysis. The effect of varying the length of the alkyl side chain and conformations of cations has been investigated by using different ionic liquids based on piperidinium and imidazolium cations. The structure of the N,N-butyl-methyl-piperidinium cation and the assignment of its vibrational spectrum have been further elucidated by quantum chemistry calculations. The X-ray data indicate that the organic cations are intercalated parallel to the layers of the clay. Comparison of Raman spectra of pure ionic liquids with different anions and the resulting solid hybrid materials in which the organic cations have been intercalated into the clay characterizes the local environment experienced by the cations in the hybrid materials. The Raman spectra of hybrid materials suggest that the local environment of all confined cations, in spite of this diversity in properties, resembles the liquid state of ionic liquids with a relatively disordered structure.


Subject(s)
Aluminum Silicates/chemistry , Ionic Liquids/chemistry , Cations/chemistry , Clay , Imidazoles/chemistry , Models, Molecular , Piperidines/chemistry , Spectrum Analysis, Raman , X-Ray Diffraction
6.
J Phys Chem B ; 116(40): 12319-24, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22978654

ABSTRACT

Molecular dynamics simulations have been performed for ionic liquids based on a ternary mixture of lithium and ammonium cations and a common anion, bis(trifluoromethylsulfonyl)imide, [Tf(2)N](-). We address structural changes resulting from adding Li(+) in ionic liquids with increasing length of an ether-functionalized chain in the ammonium cation. The calculation of static structure factors reveals the lithium effect on charge ordering and intermediate range order in comparison with the neat ionic liquids. The charge ordering is modified in the lithium solution because the coordination of [Tf(2)N](-) toward Li(+) is much stronger than ammonium cations. Intermediate range order is observed in neat ionic liquids based on ammonium cations with a long chain, but in the lithium solutions, there is also a nonhomogenous distribution of Li(+) cations. The presence of Li(+) enhances interactions between the ammonium cations due to correlations between the oxygen atom of the ether chain and the nitrogen atom of another ammonium cation.


Subject(s)
Ethers/chemistry , Hydrocarbons, Fluorinated/chemistry , Imides/chemistry , Ionic Liquids/chemistry , Lithium Compounds/chemistry , Quaternary Ammonium Compounds/chemistry , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Salts/chemistry , Solutions
7.
Faraday Discuss ; 154: 171-88; discussion 189-220, 465-71, 2012.
Article in English | MEDLINE | ID: mdl-22455021

ABSTRACT

An interaction potential including chloride anion polarization effects, constructed from first-principles calculations, is used to examine the structure and transport properties of a series of chloroaluminate melts. A particular emphasis was given to the study of the equimolar mixture of aluminium chloride with 1-ethyl-3-methylimidazolium chloride, which forms a room temperature ionic liquid EMI+ -AlCl4-. The structure yielded by the classical simulations performed within the framework of the polarizable ion model is compared to the results obtained from entirely electronic structure-based simulations: An excellent agreement between the two flavors of molecular dynamics is observed. When changing the organic cation EMI+ by an inorganic cation with a smaller ionic radius (Li+, Na+, K+), the chloroaluminate speciation becomes more complex, with the formation of Al2Cl7-, in small amounts. The calculated transport properties (diffusion coefficients, electrical conductivity and viscosity) of EMI+ -AlCl4- are in good agreement with experimental data.


Subject(s)
Aluminum/chemistry , Ionic Liquids/chemistry , Molecular Dynamics Simulation , Organometallic Compounds/chemistry , Temperature , Salts/chemistry
8.
J Chem Phys ; 135(20): 204506, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22128942

ABSTRACT

Molecular dynamics simulations were performed for ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion, [NTf(2)], and ammonium cations with increasing length of the alkyl chain and ether functionalized chain. The signature of charge ordering is a sharp peak in the charge-charge structure factor, S(qq)(k), whose intensity is barely affected for longer carbon chain in tetraalkylammonium systems, but decreases in ether functionalized ionic liquids. The first sharp diffraction peak (FSDP) and the corresponding intermediate range order (IRO) are observed in the total S(k) of ionic liquids containing ammonium cations with relatively long chains. The intensity of the FSDP is lower in the total S(k) of the ether derivative in comparison with the tetraalkylammonium counterpart of the same chain length. It is shown that the nature of the IRO is structural heterogeneity of polar and non-polar domains, even though domains defined by chain interactions in the ether derivatives become more polar. Charge correlation in the ether derivative is modified because cations can be coordinated by oxygen atoms of the ether functionalized chain of neighboring cations.

9.
J Phys Chem B ; 115(31): 9662-70, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21726096

ABSTRACT

Transport coefficients have been measured as a function of the concentration of sulfur dioxide, SO(2), dissolved in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [BMMI][Tf(2)N], as well as in its lithium salt solution, Li[Tf(2)N]. The SO(2) reduces viscosity and density and increases conductivity and diffusion coefficients in both the neat [BMMI][Tf(2)N] and the [BMMI][Tf(2)N]-Li[Tf(2)N] solution. The conductivity enhancement is not assigned to a simple viscosity effect; the weakening of ionic interactions upon SO(2) addition also plays a role. Microscopic details of the SO(2) effect were unraveled using Raman spectroscopy and molecular dynamics (MD) simulations. The Raman spectra suggest that the Li(+)-[Tf(2)N] interaction is barely affected by SO(2), and the SO(2)-[Tf(2)N] interaction is weaker than previously observed in an investigation of an ionic liquid containing the bromide anion. Transport coefficients calculated by MD simulations show the same trend as the experimental data with respect to SO(2) content. The MD simulations provide structural information on SO(2) molecules around [Tf(2)N], in particular the interaction of the sulfur atom of SO(2) with oxygen and fluorine atoms of the anion. The SO(2)-[BMMI] interaction is also important because the [BMMI] cations with above-average mobility have a larger number of nearest-neighbor SO(2) molecules.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Lithium/chemistry , Sulfur Dioxide/chemistry , Electric Conductivity , Molecular Dynamics Simulation , Solutions/chemistry , Spectrum Analysis, Raman , Viscosity
10.
J Phys Chem B ; 113(4): 1074-9, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-19119804

ABSTRACT

The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain ( Zhou et al. Chem. Eur. J. 2005 , 11 , 752. ). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalkylammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.

11.
J Phys Chem B ; 112(20): 6430-5, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18438994

ABSTRACT

The effect of adding SO2 on the structure and dynamics of 1-butyl-3-methylimidazolium bromide (BMIBr) was investigated by low-frequency Raman spectroscopy and molecular dynamics (MD) simulations. The MD simulations indicate that the long-range structure of neat BMIBr is disrupted resulting in a liquid with relatively low viscosity and high conductivity, but strong correlation of ionic motion persists in the BMIBr-SO2 mixture due to ionic pairing. Raman spectra within the 5

12.
J Phys Chem B ; 112(7): 2102-9, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18220384

ABSTRACT

Lithium salt solutions of Li(CF3SO2)2N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)2N(-), bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.

13.
J Phys Chem B ; 111(40): 11776-85, 2007 Oct 11.
Article in English | MEDLINE | ID: mdl-17877389

ABSTRACT

Thermodynamics, structure, and dynamics of an ionic liquid based on a quaternary ammonium salt with ether side chain, namely, N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM2E TFSI, are investigated by molecular dynamics (MD) simulations. Average density and configurational energy of simulated MOENM2E TFSI are interpreted with models that take into account empirical ionic volumes. A throughout comparison of the equilibrium structure of MOENM2E TFSI with previous results for the more common ionic liquids based on imidazolium cations is provided. Several time correlation functions are used to reveal the microscopic dynamics of MOENM2E TFSI. Structural relaxation is discussed by the calculation of simultaneous space-time correlation functions. Temperature effects on transport coefficients (diffusion, conductivity, and viscosity) are investigated. The ratio between the actual conductivity and the estimate from ionic diffusion by the Nernst-Einstein equation indicates that correlated motion of neighboring ions in MOENM2E TFSI is similar to imidazolium ionic liquids. In line with experiment, Walden plot of conductivity and viscosity indicates that simulated MOENM2E TFSI should be classified as a poor ionic liquid.

14.
J Phys Chem B ; 111(30): 8717-9, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17608529

ABSTRACT

The contact between minor amounts of SO2 and crystalline 1-butyl-3-methyl-imidazolium bromide (BMIBr) causes the almost immediate melting of the ionic liquid (mp 45 degrees C) as well as a dramatic decrease in its viscosity in comparison to the pure molten phase. The same behavior was observed for other halide ionic liquids of higher melting points (70, 135, and 220 degrees C). The Raman spectrum of BMIBr-SO2 clearly indicates a specific charge transfer interaction involving SO2 and the halide. The measurements of ionic conductivity and diffusion coefficients obtained for the neat BMIBr (molten phase) and for the BMIBr-SO2 strongly suggest a higher degree of ionic association in the presence of SO2. Molecular dynamic simulations indicate that although the cation-anion distance is preserved in the short range, there is a variation in the interionic distances in the second shell, leading to a less organized structure in the long range. The modulation of the structural and physical properties of ionic liquids by SO2 and the convenient choice of the ions for gas absorption are suggested.


Subject(s)
Imidazoles/chemistry , Sulfur Dioxide/chemistry , Crystallization , Ionic Liquids/chemistry , Molecular Structure , Spectrum Analysis, Raman , Viscosity
15.
J Chem Phys ; 125(21): 214903, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17166045

ABSTRACT

The dynamical properties of the polymer electrolyte poly(ethylene oxide) (PEO)LiClO(4) have been investigated by molecular dynamics simulations. The effect of changing salt concentration and temperature was evaluated on several time correlation functions. Ionic displacements projected on different directions reveal anisotropy in short-time (rattling) and long-time (diffusive) dynamics of Li(+) cations. It is shown that ionic mobility is coupled to the segmental motion of the polymeric chain. Structural relaxation is probed by the intermediate scattering function F(k,t) at several wave vectors. Good agreement was found between calculated and experimental F(k,t) for pure PEO. A remarkable slowing down of polymer relaxation is observed upon addition of the salt. The ionic conductivity estimated by the Nernst-Einstein equation is approximately ten times higher than the actual conductivity calculated by the time correlation function of charge current.

SELECTION OF CITATIONS
SEARCH DETAIL
...