Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 76: 233-241, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482522

ABSTRACT

In this study, an evaluation was performed to determine the in vitro bioactivity, viability of stem cells, and antibiofilm effect against Streptococcus mutans of two bioactive gel-glass 60SiO2-36CaO-4P2O5 (BG-A) and 80SiO2-15CaO-5P2O5 (BG-B) compositions. Both materials were bioactive and undergo the formation of hydroxycarbonate apatite (HCA) on their surfaces when immersed in simulated body fluid (SBF) after 12h, but the BG-A composition showed a more significant formation rate. The pH variation of the samples during the test in SBF indicated that an abrupt change had occurred for the BG-A composition within the first few hours, and the pH was subsequently maintained over time, supporting its stronger antibacterial effects against S. mutans. For the in vitro viability test using mesenchymal stem cells (MSCs), the BG-B showed significantly higher cell viability compared to the BG-A composition at concentrations of 0.125, 1.25 and 12.50mg/mL for 2days. These results indicated that the higher solubility of the BG-A glass favors bioactivity and antibacterial effects. However, as a result of rapid degradation, the increase in the concentration of ions in the cell culture medium was not favorable for cell proliferation. Thus, by varying the composition of glasses, and consequently their dissolution rate, it is possible to favor bioactivity, antimicrobial activity or stem cell proliferation for a particular application of interest.


Subject(s)
Streptococcus mutans , Biocompatible Materials , Biofilms , Body Fluids , Cell Survival , Gels , Glass , Stem Cells
2.
Arch Oral Biol ; 67: 46-53, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27023401

ABSTRACT

OBJECTIVE: The purpose of this study was evaluate, for the first time, the impact of incorporation of nanostructured silver vanadate (ß-AgVO3) in antibiofilm and mechanical properties of dental acrylic resins (poly(methyl methacrylate), PMMA). DESIGN: The ß-AgVO3 was synthesized and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and microanalysis (SEM/EDS). Resins specimens were prepared with 0-10% wt.% ß-AgVO3 and characterized by SEM, XRD and optical microscopy. The antibiofim activity of the samples against Candida albicans and Streptococcus mutans was investigated by XTT reduction test, colony-forming units (CFUs), and confocal laser scanning microscopy (CLSM). The flexural strength, hardness, and surface roughness of the samples containing ß-AgVO3 were compared with the pure PMMA matrix. RESULTS: The incorporation of 10% ß-AgVO3 significantly reduced the metabolic activity of C. albicans and S. mutans (p<0.05). There was a reduction in microbial load (CFU/mL) of microorganisms for the different concentrations used (p<0.05), which was confirmed by confocal microscopy. The addition of ß-AgVO3 did not change the mechanical properties of hardness and surface roughness of the resins (p>0.05). However, flexural strength decreased with the addition of amounts greater than 1% (p<0.05). CONCLUSIONS: ß-AgVO3 additions in dental acrylic resin may have an impact on inhibition of biofilm of main microorganisms associated with dental prostheses. However, the viability of clinical use should be evaluated in function of changed promoted in some mechanical properties.


Subject(s)
Acrylic Resins/pharmacology , Biofilms/drug effects , Nanocomposites/chemistry , Silver/pharmacology , Vanadates/pharmacology , Acrylic Resins/chemical synthesis , Acrylic Resins/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Composite Resins/chemistry , Dental Materials/chemistry , Hardness , Materials Testing , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Silver/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Vanadates/chemistry
3.
J Prosthet Dent ; 115(2): 238-46, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26545862

ABSTRACT

STATEMENT OF PROBLEM: The accumulation of bacteria on the surface of dental prostheses can lead to systemic disease. PURPOSE: The purpose of this in vitro study was to evaluate the growth of Staphylococcus aureus and Pseudomonas aeruginosa on the surface of autopolymerizing (AP) and heat-polymerizing (HP) acrylic resins incorporated with nanostructured silver vanadate (ß-AgVO3) and its impact strength. MATERIAL AND METHODS: For each resin, 216 circular specimens (9 × 2 mm) were prepared for microbiologic analysis and 60 rectangular specimens (65 × 10 × 3.3 mm) for mechanical analysis, according to the percentage of ß-AgVO3: 0%, control group; 0.5%; 1%; 2.5%; 5%; and 10%. After a biofilm had formed, the metabolic activity of the bacteria was measured using the XTT reduction assay (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) (n=8), and the number of viable cells was determined by counting colony forming units per milliliter (CFU/mL) (n=8). Confocal laser scanning microscopy (CLSM) was used to complement the analyses (n=2). The mechanical behavior was evaluated by impact strength assays (n=10). Data were analyzed by 2-way ANOVA, followed by the Tukey honestly significant difference (HSD) post hoc test (α=.05). RESULTS: The addition of 5% and 10% ß-AgVO3 significantly decreased the metabolic activity of P. aeruginosa for both resins (P<.05). The HP resin promoted a greater reduction in metabolic activity than the AP resin (P<.05). No difference was found in the metabolic activity of S. aureus according to the XTT (P>.05). The number of CFU/mL for S. aureus and P. aeruginosa decreased significantly when 5% and 10% ß-AgVO3 were added (P<.001). These concentrations significantly reduced the impact strength of the resins (P<.001) because the system was weakened by the presence of clusters of ß-AgVO3. CONCLUSION: The addition of ß-AgVO3 can provide acrylic resins with antibacterial activity but reduces their impact strength. More efficient addition methods should be investigated.


Subject(s)
Acrylic Resins/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Materials Testing , Nanocomposites/chemistry , Staphylococcus aureus/drug effects , Acrylic Resins/chemistry , Biofilms/drug effects , Denture Bases , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Resins, Synthetic/pharmacology , Staphylococcus aureus/growth & development , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...