Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Int J Biol Macromol ; 254(Pt 2): 127641, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913875

ABSTRACT

Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.


Subject(s)
Fibroins , Nanofibers , Humans , Fibroins/chemistry , Tissue Engineering/methods , Biocompatible Materials/chemistry , Drug Delivery Systems , Nanofibers/chemistry , Polymers , Silk/chemistry , Tissue Scaffolds/chemistry
2.
J Biomed Mater Res B Appl Biomater ; 110(3): 517-526, 2022 03.
Article in English | MEDLINE | ID: mdl-34498810

ABSTRACT

Dentin hypersensitivity (DH) is characterized by pain caused by an external stimulus on exposed dentin. Different therapeutic approaches have been proposed to mitigate this problem; however, none of them provide permanent pain relief. In this study, we synthesized and characterized experimental bioactive glasses containing 3.07 mol% SrO or 3.36 mol% K2 O (both equivalent to 5 wt% in the glass), and evaluated their effect on dentin permeability to verify their potential to treat DH. The experimental materials were characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, micro-Raman spectroscopy, and X-ray diffraction to confirm the respective structures and chemical compositions. The reduction in the hydraulic conductance of dentin was evaluated at the three stages: minimum permeability; maximum permeability (24% ethylenediaminetetraacetic acid [EDTA] treatment); and final dentin permeability after treatment with the bioactive glasses. They all promoted a reduction in dentin permeability, with a significant difference for each sample and posttreatment group. Also, a significant reduction in dentin permeability was observed even after a simulated toothbrushing test, demonstrating effective action of these materials against DH. Besides, incorporating 3.07 mol% SrO was a positive factor. Therefore, strontium's desensitizing and re-mineralizing properties can be further exploited in bioactive glasses to promote a synergistic effect to treat DH.


Subject(s)
Dentin Desensitizing Agents , Dentin Sensitivity , Dentin , Dentin Desensitizing Agents/chemistry , Dentin Desensitizing Agents/pharmacology , Dentin Desensitizing Agents/therapeutic use , Dentin Permeability , Dentin Sensitivity/therapy , Humans , Microscopy, Electron, Scanning , Potassium/pharmacology , Potassium/therapeutic use , Strontium/chemistry , Strontium/pharmacology
3.
J Dent ; 111: 103719, 2021 08.
Article in English | MEDLINE | ID: mdl-34118283

ABSTRACT

OBJECTIVES: To evaluate obliterating capability and biological performance of desensitizing agents. METHODS: 50 dentin blocks were distributed according to the desensitizing agent used (n = 10): Control (Artificial saliva); Ultra EZ (Ultradent); Desensibilize Nano P (FGM); T5-OH Bioactive Glass (Experimental solution); F18 Bioactive Glass (Experimental solution). Desensitizing treatments were performed for 15 days. In addition, specimens were subjected to acid challenge to simulate oral environment demineralizing conditions. Samples were subjected to permeability analysis before and after desensitizing procedures and acid challenge. Cytotoxicity analysis was performed by using Alamar Blue assay and complemented by total protein quantification by Pierce Bicinchoninic Acid assay at 15 min, 24-h and 48-h time points. Scanning electron microscopy and energy dispersion X-ray spectroscopy were performed for qualitative analysis. Data of dentin permeability was analyzed by two-way repeated measures ANOVA and Tukey's test. For cytotoxicity, Kruskal-Wallis and Newman-Keuls tests. RESULTS: for dentin permeability there was no significant difference among desensitizing agents after treatment, but control group presented highest values (0.131 ± 0.076 Lp). After acid challenge, control group maintained highest values (0.044 ± 0.014 Lp) with significant difference to other groups, except for Desensibilize Nano P (0.037 ± 0.019 Lp). For cytotoxicity, there were no significant differences among groups. CONCLUSION: Bioglass-based desensitizers caused similar effects to commercially available products, regarding permeability and dentin biological properties. CLINICAL SIGNIFICANCE: There is no gold standard protocol for dentin sensitivity. The study of novel desensitizing agents that can obliterate dentinal tubules in a faster-acting and long-lasting way may help meet this clinical need.


Subject(s)
Dentin Desensitizing Agents , Dentin Sensitivity , Dentin , Dentin Desensitizing Agents/pharmacology , Dentin Permeability , Dentin Sensitivity/drug therapy , Humans , Microscopy, Electron, Scanning , Permeability , Saliva, Artificial/pharmacology , Spectrometry, X-Ray Emission
4.
J Appl Oral Sci ; 28: e20190384, 2020.
Article in English | MEDLINE | ID: mdl-32520077

ABSTRACT

OBJECTIVES: This study evaluated if the use of a bioactive glass-ceramic-based gel, named Biosilicate (BS), before, after or mixed with bleaching gel, could influence the inflammation of the dental pulp tissue of rats' molars undergoing dental bleaching with hydrogen peroxide (H2O2). METHODOLOGY: The upper molars of Wistar rats (Rattus norvegicus, albinus) were divided into Ble: bleached (35% H2O2, 30-min); Ble-BS: bleached and followed by BS-based gel application (20 min); BS-Ble: BS-based gel application and then bleaching; BS/7d-Ble: BS-based gel applications for 7 days and then bleaching; Ble+BS: blend of H2O2 with BS-based gel (1:1, 30-min); and control: placebo gel. After 2 and 30 days (n=10), the rats were euthanized for histological evaluation. The Kruskal-Wallis and Dunn statistical tests were performed (P<0.05). RESULTS: At 2 days, the Ble and Ble-BS groups had significant alterations in the pulp tissue, with an area of necrosis. The groups with the application of BS-based gel before H2O2 had moderate inflammation and partial disorganization in the occlusal third of the coronary pulp and were significantly different from the Ble in the middle and cervical thirds (P<0.05). The most favorable results were observed in the Ble+BS, which was similar to the control in all thirds of the coronary pulp (P>0.05). At 30 days, the pulp tissue was organized and the bleached groups presented tertiary dentin deposition. The Ble group had the highest deposition of tertiary dentin, followed by the Ble-BS, and both were different from control (P<0.05). CONCLUSION: A single BS-based gel application beforehand or BS-based gel blended with a bleaching gel minimize the pulp damage induced by dental bleaching.


Subject(s)
Dental Pulp/drug effects , Glass/chemistry , Hydrogen Peroxide/chemistry , Pulpitis/prevention & control , Tooth Bleaching Agents/chemistry , Tooth Bleaching/methods , Animals , Dental Pulp/pathology , Hydrogen Peroxide/adverse effects , Male , Molar , Pulpitis/chemically induced , Pulpitis/pathology , Random Allocation , Rats, Wistar , Reproducibility of Results , Time Factors , Tooth Bleaching/adverse effects , Tooth Bleaching Agents/adverse effects , Treatment Outcome
5.
J. appl. oral sci ; 28: e20190384, 2020. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-1134801

ABSTRACT

Abstract Objectives This study evaluated if the use of a bioactive glass-ceramic-based gel, named Biosilicate (BS), before, after or mixed with bleaching gel, could influence the inflammation of the dental pulp tissue of rats' molars undergoing dental bleaching with hydrogen peroxide (H2O2). Methodology The upper molars of Wistar rats (Rattus norvegicus, albinus) were divided into Ble: bleached (35% H2O2, 30-min); Ble-BS: bleached and followed by BS-based gel application (20 min); BS-Ble: BS-based gel application and then bleaching; BS/7d-Ble: BS-based gel applications for 7 days and then bleaching; Ble+BS: blend of H2O2 with BS-based gel (1:1, 30-min); and control: placebo gel. After 2 and 30 days (n=10), the rats were euthanized for histological evaluation. The Kruskal-Wallis and Dunn statistical tests were performed (P<0.05). Results At 2 days, the Ble and Ble-BS groups had significant alterations in the pulp tissue, with an area of necrosis. The groups with the application of BS-based gel before H2O2 had moderate inflammation and partial disorganization in the occlusal third of the coronary pulp and were significantly different from the Ble in the middle and cervical thirds (P<0.05). The most favorable results were observed in the Ble+BS, which was similar to the control in all thirds of the coronary pulp (P>0.05). At 30 days, the pulp tissue was organized and the bleached groups presented tertiary dentin deposition. The Ble group had the highest deposition of tertiary dentin, followed by the Ble-BS, and both were different from control (P<0.05). Conclusion A single BS-based gel application beforehand or BS-based gel blended with a bleaching gel minimize the pulp damage induced by dental bleaching.


Subject(s)
Animals , Male , Pulpitis/prevention & control , Tooth Bleaching/methods , Dental Pulp/drug effects , Tooth Bleaching Agents/chemistry , Glass/chemistry , Hydrogen Peroxide/chemistry , Pulpitis/chemically induced , Pulpitis/pathology , Time Factors , Tooth Bleaching/adverse effects , Random Allocation , Reproducibility of Results , Treatment Outcome , Rats, Wistar , Dental Pulp/pathology , Tooth Bleaching Agents/adverse effects , Hydrogen Peroxide/adverse effects , Molar
6.
Mater Sci Eng C Mater Biol Appl ; 55: 436-47, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117775

ABSTRACT

In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity.


Subject(s)
Cell Proliferation , Ceramics , Glass , Powders , Calcium Compounds/chemistry , Microscopy, Electron, Scanning , Oxides/chemistry , Phosphorus Compounds/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction , Zirconium/chemistry
7.
J Mater Sci Mater Med ; 24(2): 365-79, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23114636

ABSTRACT

Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)).


Subject(s)
Ceramics/chemistry , Ceramics/chemical synthesis , Phosphorus/pharmacology , Blood , Body Fluids/chemistry , Body Fluids/physiology , Ceramics/pharmacology , Crystallization , Gels/chemical synthesis , Gels/chemistry , Gels/pharmacology , Humans , Materials Testing , Models, Biological , Phase Transition , Phosphorus/chemistry , Surface Properties , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...