Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(20): 10011-10029, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38700054

ABSTRACT

Several studies on semiconductor material-based single-band, high-performance photosensitive, and chemically stable photodetectors are available; however, the lack of broad spectral response, device flexibility, and biodegradability prevents them from being used in wearable and flexible electronics. Apart from that, the selection of the device fabrication technique is a very crucial factor nowadays in terms of equipment utilization and environmental friendliness. This report presents a study demonstrating a straightforward solvent- and equipment-free handprint technique for the fabrication of WSe2-Ti3C2TX flexible, biodegradable, robust, and broadband (Vis-NIR) photodetectors. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirm the formation of a WSe2-Ti3C2TX film. The WSe2-Ti3C2TX van der Waals heterostructure plays a key role in enhancing the optoelectrical properties. The as-prepared photodetector exhibits efficient broadband response with a photoresponsivity and a detectivity of 0.3 mA W-1 and 6.8 × 1010 Jones, respectively, under NIR (780 nm) irradiation (1.0 V bias). Under various pressure and temperature conditions, the device's flexibility and durability were tested. The biodegradable photodetector prepared through the solvent- and equipment-free handprint technique has the potential to attract significant interest in wearable and flexible electronics in the future.

2.
ACS Appl Mater Interfaces ; 15(27): 32515-32524, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37378521

ABSTRACT

Utilizing alternative energy sources to fossil fuels has remained a significant issue for humanity. In this context, efficient earth-abundant bifunctional catalysts for water splitting and energy storage technologies like hybrid supercapacitors have become essential for achieving a sustainable future. Herein, CoCr-LDH@VNiS2 was synthesized by hydrothermal synthesis. The CoCr-LDH@VNiS2 catalyst entails 1.62 V cell voltage to reach the current density of 10 mA cm-2 for overall water splitting. The CoCr-LDH@VNiS2 electrode illustrates a high electrochemical specific capacitance (Csp) of 1380.9 F g-1 at a current density of 0.2 A g-1 and an outstanding stability with 94.76% retention. Moreover, the flexible asymmetric supercapacitor (ASC) achieved an energy density of 96.03 W h kg-1@0.2 A g-1 at a power density of 539.98 W kg-1 with remarkable cyclic stability. The findings provide a new approach toward the rational design and synthesis of bifunctional catalysts for water splitting and energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...