Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 125(14): 4285-92, 2003 Apr 09.
Article in English | MEDLINE | ID: mdl-12670251

ABSTRACT

Anion metathesis reactions between ZrNCl and A(2)S (A = Na, K, Rb) in the solid state follow three different pathways depending on reaction temperature and reactant stoichiometry: (1) the reaction of ZrNCl with A(2)S in the 2:1 stoichiometry at 800 degrees C/72 h/in vacuo yields alpha-Zr(2)N(2)S with the expected layered structure of La(2)O(2)S. Above 850 degrees C, alpha-Zr(2)N(2)S (P3 macro m1; a = 3.605(1) A, c = 6.421(3) A) neatly transforms to beta-Zr(2)N(2)S (P6(3)/mmc: a = 3.602(1) A, c = 12.817(1) A). The structures of the alpha- and beta-forms are related by an a/2 shift of successive Zr(2)N(2) layers. (2) The same reaction at low temperatures (300-400 degrees C) yields ACl intercalated phases of the formula A(x)Zr(2)N(2)SCl(x) (0 < x < approximately 0.15), where alkali ions are inserted between the S/Cl.S/Cl van der Waals gap of a ZrNCl-type structure. The S and Cl ions are disordered and the c lattice parameters are alkali dependent (R3 macro m, a approximately 3.6 A, c approximately 28.4 (Na), 28.9 (K), and 30.5 A (Rb). A(x)Zr(2)N(2)SCl(x) phases are hygroscopic and reversibly absorb water to give monohydrates. (3) Reaction of ZrNCl with excess A(2)S at 400-1000 degrees C gives A(2)S intercalated phases of the formula A(2)(x)Zr(2)N(2)S(1+)(x) (0 < x < 0.5), where the alkali ions reside between the S.S van der Waals gap of a ZrNCl type structure (R3 macro m, a approximately 3.64 A, c approximately 29.48 A). Structural characterization of the new phases and implications of the results are described.

2.
Inorg Chem ; 40(11): 2554-69, 2001 May 21.
Article in English | MEDLINE | ID: mdl-11350234

ABSTRACT

[Pd(16)Ni(4)(CO)(22)(PPh(3))(4)](2)(-) (1) and [Pd(33)Ni(9)(CO)(41)(PPh(3))(6)](4)(-) (2) were obtained as the two major products from the reduction of PdCl(2)(PPh(3))(2) with [Ni(6)(CO)(12)](2)(-). Their crystal structures as [PPh(4)](+) salts were unambiguously determined from CCD X-ray crystallographic analyses; the resulting stoichiometries were ascertained from elemental analyses. Infrared, multinuclear (1)H, (31)P[(1)H] NMR, UV-vis, CV, variable-temperature magnetic susceptibility, and ESI FT/ICR mass spectrometric measurements were performed. The Pd(16)Ni(4) core of 1 ideally conforms to a ccp nu(3) tetrahedron of pseudo-T(d)() (4 3m) symmetry. Its geometry normal to each tetrahedral Pd(7)Ni(3) face (i.e., along each of the four 3-fold axes) may be viewed as a four-layer stacking of 20 metal atoms in a ccp [a(Ni(1)) b(Pd(3)) c(Pd(6)) a(Pd(7)Ni(3))] sequence. A comparative analysis of the different ligand connectivities about the analogous metal-core geometries in 1 and the previously reported [Os(20)(CO)(40)](2)(-) has stereochemical implications pertaining to the different possible modes of carbon monoxide attachment to ccp metal(111) surfaces. The unique geometry of the Pd(33)Ni(9) core of 2, which has pseudo-D(3)(h)() (6 2m) symmetry, consists of five equilateral triangular layers that are stacked in a hcp [a(Pd(7)Ni(3)) b(Pd(6)) a(Pd(7)Ni(3)) b(Pd(6)) a(Pd(7)Ni(3))] sequence. Variable-temperature magnetic susceptibility measurements indicated both 1 and 2 to be diamagnetic over the entire temperature range from 5.0 to 300 K. Neutral Pd(12)(CO)(12)(PPh(3))(6) (3) and [Pd(29)(CO)(28)(PPh(3))(7)](2)(-) (4) as the [PPh(4)](+) salt were obtained as minor decomposition products from protonation reactions of 1 and 2, respectively, with acetic acid. Compound 3 of pseudo-D(3)(d)() (3 2/m) symmetry represents the second highly deformed hexacapped octahedral member of the previously established homopalladium family of clusters containing uncapped, monocapped, bicapped, and tetracapped Pd(6) octahedra. The unprecedented centered 28-atom polyhedron for the Pd(29) core of 4 of pseudo-C(3)(v)() (3m) symmetry may be described as a four-layer stacking of 29 metal atoms in a mixed hcp/ccp [a(Pd(1)) b(Pd(3)) a(Pd(10)) c(Pd(15))] sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...