Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Fertil Steril ; 12(4): 335-338, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30291696

ABSTRACT

Energy balance is regulated by ghrelin which is a neuroendocrine modulator. Ghrelin is expressed in reproductive organs. However, the role of ghrelin during in vitro maturation (IVM) and bovine preimplantational development is limited. The purpose of this study was to measure the expression of ghrelin (GHRL) and its receptor growth hormone secretagogue receptor 1A (GHS-R1A) mRNA, and determine cumulus oocyte complex (COC) viability after IVM with 0, 20, 40 and 60 pM of ghrelin. Also, pronuclear formation was recorded after in vitro fertilization (IVF). GHRL and GHS-R1A mRNA expression in oocyte and cumulus cells (CCs) was assessed using reverse transcription-polymerase chain reaction (PCR). Oocyte and CC viability were analyzed with the fluorescein diacetate fluorochrome-trypan blue technique. Pronuclear formation was determined 18 hours after IVF with Hoechst 33342. The results demonstrated that ghrelin mRNA is present in oocyte and CCs before and after 24 hours IVM with all treatments. Ghrelin receptor, GHS-R1A, was only detected in oocytes and CCs after 24 hours IVM with 20, 40 and 60 pM of ghrelin. Oocyte viability was not significantly different (P=0.77) among treatments. However, CC viability was significantly lower (P=0.04) when COCs were matured with ghrelin (77.65, 72.10, 66.32 and 46.86% for 0, 20, 40, and 60 pM of ghrelin, respectively). The chance of two pronuclei forming were higher (P=0.03) when ghrelin was not be added to the IVM medium. We found that ghrelin negatively impacts CC viability and pronuclear formation.

2.
Zygote ; 24(1): 139-48, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25707535

ABSTRACT

Adequate dietary intake of manganese (Mn) is required for normal reproductive performance in cattle. This study was carried out to investigate the effect of Mn during in vitro maturation of bovine cumulus-oocyte complexes (COC) on apoptosis of cumulus cells, cumulus expansion, and superoxide dismutase (SOD) activity in the COC. The role of cumulus cells on Mn transport and subsequent embryo development was also evaluated. Early apoptosis decreased in cumulus cells matured with Mn compared with medium alone. Cumulus expansion did not show differences in COC matured with or without Mn supplementation. SOD activity was higher in COC matured with 6 ng/ml Mn than with 0 ng/ml Mn. Cleavage rates were higher in COC and denuded oocytes co-cultured with cumulus cells, either with or without Mn added to in vitro maturation (IVM) medium. Regardless of the presence of cumulus cells during IVM, the blastocyst rates were higher when 6 ng/ml Mn was supplemented into IVM medium compared with growth in medium alone. Blastocyst quality was enhanced when COC were matured in medium with Mn supplementation. The results of the present study indicated that Mn supplementation to IVM medium enhanced the 'health' of COC, and improved subsequent embryo development and embryo quality.


Subject(s)
Blastocyst/cytology , Cumulus Cells/cytology , In Vitro Oocyte Maturation Techniques/methods , Manganese/pharmacology , Oocytes/physiology , Animals , Apoptosis/drug effects , Blastocyst/physiology , Cattle , Culture Media/chemistry , Culture Media/pharmacology , Cumulus Cells/drug effects , Cytoplasm/drug effects , Cytoplasm/physiology , Dose-Response Relationship, Drug , Female , Fertilization in Vitro , Manganese/administration & dosage , Oocytes/drug effects , Superoxide Dismutase/metabolism
3.
Cell Biol Int ; 39(10): 1090-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25879691

ABSTRACT

The objective of this study was to investigate the effect of VEGF and Cysteamine during in vitro maturation (IVM) of bovine oocytes on GSH content and developmental competence. For this purpose, experiments were designed to evaluate the effect of 0, 100, 300, and 500 ng/mL VEGF in IVM medium on: GSH content in oocytes and cumulus cells (Exp. 1) and subsequent embryo development (Exp. 2). Also, influence of adding 500 ng/mL VEGF and 100 µM Cysteamine to IVM medium on GSH content in oocytes and cumulus cells (Exp. 3) and oocyte developmental capacity (Exp. 4) were evaluated. Oocytes were matured in: a) Control; b) VEGF 0-3 h; c) Cysteamine 4-24 h; d) VEGF 0-3 h + Cysteamine 4-24 h; and e) VEGF + Cysteamine 24 h. The results showed that: i) VEGF did not alter GSH content in oocytes and cumulus cells; (ii) supplementation of 300 and 500 ng/mL VEGF increased blastocyst yield; (iii) the presence of VEGF + Cysteamine simultaneously during 24 h improved GSH content but not embryo development; and (iv) the presence of VEGF during the first 3 h + Cysteamine from 4 to 24 h increased GSH concentrations and subsequent embryo development. In conclusion, the addition of VEGF and Cysteamine in two sequential steps to maturation medium result in an improvement of cytoplasmic maturation, with a positive impact on oocyte developmental capacity by increasing the efficiency of in vitro blastocyst production. However, the effect was detrimental when both VEGF and Cysteamine were present during 24 of IVM.


Subject(s)
Cysteamine/pharmacology , Embryonic Development/drug effects , In Vitro Oocyte Maturation Techniques , Oocytes/growth & development , Vascular Endothelial Growth Factor A/pharmacology , Animals , Blastocyst/physiology , Cattle , Cumulus Cells/physiology , Cysteamine/administration & dosage , Glutathione/metabolism , Oocytes/drug effects , Oocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL